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1. Introduction 

Many studies have been done on various forms of mini-max pursuit-evader games for missiles 

and aircraft. These types of algorithms typically give performance that is superior to simpler 

missile guidance algorithms such as proportional, navigation or linear control techniques. The 

bibleography gives titles and abstracts of nine papers about mini-max pursuit-evader algo- 

rithms, as well as one paper on a nonlinear regulator algorithm that could be useful for mis- 

sile guidance. 

The 3D mini-max pursuit-evader algorithms typically run far too slow for real-time implemen- 

tations, so they are restricted to simulation use. Since they are run off-line, they can include 

highly detailed dynamics and constraints, at the expense of run-time. 

In this report, we derive a 3D mini-max pursuit-evader algorithm that takes between 250,000 

and 2 million floating point operations to update. This guidance algorithm could be updated 

at around 1 Hz on a rather slow 1 Mflop computer. In order to get this performance, we had 

to assume that both vehicles moved at (different) piece-wise constant speeds, along piece-wise 

circular 3D trajectories. This leaves four piece-wise constant control inputs: the two normal 

accelerations of each of the vehicles. Conventional mini-max algorithms would have to 

search through a four-dimensional control space to find the optimal trajectories. 

With the assumptions of constant speeds and constant accelerations, we have derived the 

implicit equations determining the two-dimensional surface in 3D on which all possible inter- 

cepts occur. The two-dimensional intercept surface typically encloses the slower aircraft, 

allowing it no escape. Fuel and acceleration constraints on the missile leave openings in the 

two-dimensional intercept surface through which the evading aircraft can escape. Our gui- 

dance algorithm gets its speed by using either a closed-form solution (2 million floating point 

operations) or an iterative solution (250,000 floating point operations) for all points on a 
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30 x 60 grid on the two-dimensional surface of all possible intercept points in 3D space. 

At each update (e.g. 2 Hz), the algorithm inputs the current velocity of both vehicles and the 

relative position between them. From this information, the missile computes what accelera- 

tion input it needs to rninimize the miss distance for each possible aircraft acceleration input. 

This results in a 2-dimensional intercept surface, parameterized by the aircraft's 2-dimensional 

acceleration input. On this surface, the aircraft computes some cost functional (e.g. some 

combination of intercept time, max missile acceleration, etc.) that it wants to maximize and 

choses the corresponding aircTaft acceleration input. Then the missile computes the accelera- 

tion required for the missile to get to that point on the intercept surface. 

Given the circular trajectory from the missile's initial position to the desired end-point, with 

the missile's initial velocity tangent to the circle, there is no other trajectory that simultane- 

ously has less maximum-acceleration and less flight time. We ignore paths of longer length 

which can have smaller curvature. By using the smallest reasonable intercept acceleration 

(circular paths), the missile avoids its own acceleration limits, and is less prone to hit its 

angular rate limits chasing a wildly maneuvering aircraft. 

A disadvantage of the proposed algorithm (compared to proportional nav) is that it requires 

measurements of the velocity of both vehicles, and range. Since this information is seldom 

available from sensors on a small missile, the missile may have to rely on getting these infor- 

mation updates from the aircraft that launched the missile. Alternatively, the algorithm could 

be used only to display the intercept surface to the pursuing aircraft to let the pilot know 

when to launch a missile. Another alternative is to use the algorithm on the evading aircraft 

to let it know what point on (or hole in) the intercept surface it should head toward to best 

avoid a missile that has been launched at it. 

Included near the end of this report are some examples that were run on a 120 MHz Pentium. 

6 
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The guidance algorithm itself ran at approximately 80 Hz. The color figures (see figures 10 

through 18) are snapshots of the moving graphics done using OpenGL which Microsoft has 

licensed from Silicon Graphics for the Windows NT operating system. 



2. Equations of Motion and Mini-Max Formulation 

Let vehicle 1 be the evader, and vehicle 2 be the pursuer. 

Let r^t) € R3 be the position of vehicle i. 

Let Vj(t) e R3 be the velocity of vehicle i. 

Let mi be the mass of vehicle i. 

Let Uj e U; c R2 be the two perpendicular forces on vehicle i. 

Let Vj-Kt) be the orthonormal (orthogonal) complement of Wt). 

The constant speed, point-mass equations of motion, in inertial coordinates, are given by: 

miYi(t) = VJ-(t)Ui 

rj(t) = Wt) 1=1,2 
(1) 

with initial conditions: 

wo) 5(0) i=l,2 (2) 

! 

We are considering mini-max formulations of the following -type for determining the optimal 

control inputs Uj = Uj*. The pursuer tries to minimize the miss distance, while the evader tries 

to nainimize some cost functional J. 

rr*(üi). Ü2*(Si)] = min_args 
min 

0<t<Tmax   Ib2(t)-rj(t)|| 

u^e U2cR2 

miss distance (3) 

Hi =arg ujeU^R2[ J[T*(iil)' ^*(Hl)' Ii^^i»' l20*(ui))] , 

U2   = Uj (U2 ) 

cost index   (4) 

(5) 

The mini-max computation is updated as fast as the guidance computer can calculate it, using 

the current state, jj(t), Vj(t) as the new initial conditions. 
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If the mini-max algorithm is only evaluated once, both vehicles will have constant control 

inputs, and will fly along circular trajectories. Each time the mini-max algorithm is updated, 

each vehicle recomputes the optimal value of its control inputs. This results in each vehicle's 

trajectory consisting of smoothly connected circular segments. 

For some initial conditions £(0), V^O), large enough values of Tmax, and large enough 

control-input sets V-v the vehicles intercept (zero miss distance) for any value of 

Uj e Uj c R2, i.e.: 

mm 
0^t<Tmax    IfoCO-rjCOH 

► 2 

= 0 (6) 
U26U2cR" 

In this case, T*^) is the intercept time, and rjCT*^)) = rzCT*^)) is the intercept point If 

more than one intercept occurs, T^Uj) is the smallest of those intercept times. The function 

Il(T*(Hi)) maPs *e 2-dimensional control space Uj into R3, giving the 2-dimensional inter- 

cept surface in 3-dimensional space. 

Examples of the evader's cost functional J could be: 

J = T^uj)       maximize intercept time, depleting pursuer's fuel 

J = Hu^Ui)!!       maximize pursuer acceleration, putting pursuer on acceleration limits (7) 

J = ||r2(T*(u1)) - r1(T*(u1))|| maximize miss distance (if non-zero) 



Circular Paths have Minimum Max-Acceleration 

Given the unique circular trajectory from the missile's initial position to the desired end-point, 

with the missile's initial velocity tangent to the circle, there is no other trajectory that simul- 

taneously has less maximum-acceleration and less flight time. We ignore paths of longer 

length which can have smaller curvature. By using the smallest reasonable intercept accelera- 

tion (circular paths), the missile avoids its own acceleration limits, and is less prone to hit its 

angular rate limits chasing a wildly maneuvering aircraft. 

For a proof that min-length paths with a local curvature bound consist of a circular segment 

and a straight segment, see [Dubins] whose work was also sponsored by AFOSR. 

i 
I 
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3. Intercept Surface for Vehicles on Constant-Speed 3D Circular Trajectories 

3.1 Introduction 

If speed and acceleration are allowed to vary within some bounded region, the associated 

mini-max evader-pursuer problem is computationally expensive and unlikely to be solved in 

real-time by today's computers. By assuming constant speed and any allowed constant nor- 

mal acceleration, the problem becomes tractable. In later sections, we will partially alleviate 

the restrictions of constant speed and constant normal acceleration, by recomputing the current 

optimum "constant" accelerations using the current positions and speeds, as the trajectories 

evolve. 

In this section, we will derive the equations that define the intercept surface for two vehicles 

on constant-speed circular trajectories. In the next two sections we will give algorithms for 

solving the resulting set of implicit equations. 

Assume the evader (aircraft) has initial location jj(0) and initial velocity V^O). Assume the 

pursuer (missile) has initial location £2(0) and initial velocity ^(O). 

If both vehicles maintain constant speed and constant normal acceleration, they both will 

remain on circular paths in 3D space. The set of constant-speed circular trajectories through 

the point jj(0), with initial velocity Vj(0) is 2-dimensional, and could be parameterized by the 

two components of normal acceleration. Similarly, the set of constant-speed circular trajec- 

tories through the point £2(0), with initial velocity ^(O) is 2-dimensional, and could be 

parameterized by the two components of normal acceleration. The constraint that the circles 

for vehiclej and vehicle2 intersect reduces the 4-dimensional set to a 3-dimensional set. The 

constraint that vehiclej and vehicle^ arrive at the intersection point at the same time, reduces 

the intercept surface to a 2-dimensional set.  Figure 1 shows typical intercepts. 
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This two-dimensional surface separates 3D space into regions that the aircraft can get to first, 

and regions that the missile can get to first. If the missile is capable of catching the aircraft, 

then the regions that the aircraft can get to first include a bounded region in front of the air- 

craft that shrinks to a point as the missile approaches intercept. 

To solve for the locations r in R3 where the vehicles can intercept, we will compute the time 

it takes vehicle! and vehicle to get to point r via circular paths from T±(0) and £2(0). 

We will define two sets of polar coordinates, based at the points jj(0) and ^(0). 

r = r1(0) + r1 

= r2(0) + r2 

Yi(0) 

11^(0)11 
, Vi«)/ 

Vo(0) 22 

IIVoCO)!! 
, Y2(0)x 

COSOl!) 

sinfli^cosCCi) 
sin(Ti1)sin(Ci) 

cos(ri2) 
sin(Tj2)cos(C2) 
sin(Ti2)sin(C2) 

(8) 

where 

-, Vi(0)x 

IIYi(0)|| 
e SO(3)      i = 1, 2 (9) 

ri = Ife-rj (0)|| r2 = 1(1-12(0)11 

TJi = COS l 
V!(0).(r-rj(0)) 

HXiC0)ll ri 

rj2 = cos l 
V2(0).(r-r2(0)) 

11X2(0)11 r2 

From equation 8, we also see that r^ is the angle between V^O) and r - ^(0), which is half 

the angle through which vehicle; has turned while on the circular trajectory from ij(0) to r. 
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Let Tj be the time it takes for vehiclej to travel along the circular trajectory from jj(0) to r. 

The circular distance that vehicle; travels is ||Vj(0)|| Tj. The straight-line chord distance from 

r;(0) to r is r;.  The ratio of circumferencial distance to chord distance is —:  where Tk is J ~ sinOli) 

the half-angle.  This gives us formulas for computing the arrival times as functions of ^ and 

-_lL_    T]l 
Tl " l|Yi(0>||   sin^) (10) 

r
2 ^2 

T2= IIV2(0)||   sin(Ti2) (11) 

The intercept surface is then obtained by solving for all r that satisfy the equation: T: = T2, 

i.e. 

ri = HVi(0)ll     T]2     sin(Tii) 

r2      ||V2(0)|| anCtia)     Tli ' (1 } 

Equation 12 is a single equation in the three variables: (ri/r2,TJi,T|2)- Equations 8 and 12 give 

four scalar equations on the six variables (rj/ni.Ci)« anc* (r22\2&a)- I*1 either case there are 

two more variables than equations, so we get a two-dimensional solution set. 

If we let: 

l|Vi(0)ll     %     rin(Hi) 
11X2(0)11 sin(Ti2)     ti! (   } 

then equation 12 can be written as 0 = F(r)  where: 

F(r) = fl - k r2 (14) 
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3.2 Parameterization of the Intercept Surface 

The data that describes the intercept surface can be represented as two vectors in a homogene- 

ous space: 

dataj = 
Vi(0) 
S(O) 

1 
i=l,2 (15) 

If we apply a Euclidean transformation that translates the origin to £2(0), rotates the ^(0) 

vector to the x axis, and rotates about this new x axis until the rj(0) - £2(0) vector has no z 

component, then the data becomes: 

R      03x3        ^3x1 

03,3   RT   -RTr2(0) 

0lx3   0lx3 1 

RTV!(0) 
r12cos(los) 
r12sin(los) 

0 
1 

for i=l     and 

dataj 

V2 
0 
0 
0 
0 
0 
1 

(16) 

for i=2 

where los is the angle between the unit vector j_V2 in the ^(0) direction and the 1^ unit vec- 

tor in the ij(0) - £2(0) direction. 

COS(IOS) = 1_V2 • Ln (17> 

and 

R = IV2' 
1V2 x (lv2 X &(0) - £2(0)))       - lv2 X ft(0) - £2(0)) 

(18) 

If we also uniformly scale distance by r12 and then scale time by V2, we are left with a 4- 

15 



dimensional data set: 

«ktV**, 

(1/V2)RT      03x3 03xl 

03X3      (l/r12)R
T -d/r12)RTr2(0) 

0 1x3 '1x3 

(Vi/V2)lV] 

cos(los) 
sin(los) 

0 
1 

for i=l and 

dataj 

for i=2 

(19) 

If we consider some additional condition on the shape of the intercept surface (such as when 

two surface components are disjoint) we can express this condition using the inequality: 

VifV2 ^ HQvi» l°s)     f°r some function H (20) 

In the next section, we obtain a simple expression for when the surface components are dis- 

joint, by finding another function, H(los), which satisfies the inequality: 

H(!vi, los) < H(los) for all l^vi 

We can then ensure disjoint surface components whenever: 

V,A^2 ^ H(los) 

(21) 

(22) 

To show the tightness of the bound, we also determine the value of £Vi> that makes the above 

inequality become an equality. 

3.3 Components of the Intercept Surface 

The two points jj(0) and £2(0) are both on the intercept surface. 

The scalar function F(r), whose zero set is the intercept surface, is continuous everywhere 

except at the the two points ij(0) and £2(0). 

16 



We will determine conditions on the data that ensure that the solution component that includes 

the point r^O) is disjoint from the solution component that contains the point £2(0). 

Figures 2, 3, and 4 show cases where the components are separate, touching, and merged. 
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Figure 2: Intercept Surface With Two Separated Components 

x2-x1=(0.10 3.00 -2.00 ), V1=(1.144 0.100 0.100 ), V2=(0.100 2.000 3.000 ) 
 1 1 1 1 •—>—r~n 
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-2-1 0 1 2 
halfcone(etal) halfcone(eta2) ellipsoid(eta1 ,eta2) 0<eta1<pi 0<eta2<pi 



Figure 3: Intercept Surface With Two Touching Components 

x2-x1=(0.10 3.00 -2.00 ), V1=(1.147 0.100 0.100 ), V2=(0.100 2.000 3.000 ) 

-3 
-3 -2-1 0 1 2 

halfcone(etal) ha!fcone(eta2) ellipsoid(eta1 ,eta2) 0<eta1<pi 0<eta2<pi 



Figure 4: Intercept Surface With Merged Components 

x2-x1=(0.10 3.00 -2.00 ), V1=(1.150 0.100 0.100 ), V2=(0.100 2.000 3.000 ) 

-2-1 0 1 2 
halfcone(eta1) halfcone(eta2) ellipsoid(eta1 ,eta2) 0<eta1<pi 0<eta2<pi 



The point ij(0)  has r2 = 0, so for all 0 < T]^ < JC, it is contained in the solid ellipsoid: 

IIYi(0)ll     ^ 
'l* l|V2(0)|| sinOi^) 

(23) 

For all   0 £ T|o     £ it, the point £2(0) is at the vertex of, and therefore is contained in, the 

solid half-cone: 

^^ (24) 

Theorem 1: For any fixed 0 < H^ - 7U» ^ intercept surface is contained in the union of 

the solid ellipsoid and the solid cone described above. 

To ensure that the solid half-cone Tj2 £ T^^ does not intersect the solid ellipsoid, we must 

restrict the line-of-sight (los) angle between the cone axis, ^(O), and the ellipsoid axis, 

£2(0)-H(0). 

Define the line-of-sight angle: 

— r»r\c   *■ los = cos 
Va«)) T (ri(0)- ^(0)3 

l|V2(0)||    IITJCO)- 12(0)11 
(25) 

Theorem 2: If 0 < vl/v2 and 0 < los < JC  satisfy: 

HXi(0)|| <        max 

11X2(0)11     0<1OS<TI2MIä<^ 

sin(Tl2.,) 

sin^^ 
- »n(Tio     ~ los) 

TI2 

V 1 + 
^      tanCTi^) 

(26) 
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where 

^2^ = (n - sin_I(vl/v2) + los)/2 (27) 

then the following equation has a solution with 0 < los < Tj^ < ^ 

HVi(0)ll      sinft^ 
 = sinfTb     - los) (28) 
IIY2(0)|| Tl2_ 

U2- 

For for the largest such TJ^ solution, the solid ellipsoid and solid half-cone kiss. For values 

of TJ^ Just smaller than that solution, the solid ellipsoid and solid half-cone are disjoint, so 

the solution components that contain the points jj(0) and r^O) are disjoint. 

Conjecture: When the two solution components just touch, the max intercept time on the 

component that encloses the slower vehicle, occurs at the touch point. 

= *i ||V2(0)||  Sin(Tl2)        Tl] 

l|Vi(0)||     T|2 

Är'-OT^     """" (29) 

II Vi (0)||       Tl2cora, 
> r = r for   0 < Tio < TIT     <I Jt       i.e. outside the solid half-cone 1     ||V2(0)|| anflh.J   2 '2      I2OT

« 

> 0 outside the solid ellipsoid 

So the region of space that is exterior to both the solid half-cone and the solid ellipsoid has 

22 

Proof of Theorem 1: On the intercept surface, F(r) = 0, yet in the region of space that is 
T 

exterior to both the half-cone and the ellipsoid we have: | 

F(r) = ri - k r2 ^ 

IIY^O)!!     T]2      sinCTij) 



Tj > T2 so cannot contain points on the intercept surface (where Tj = T2). 

For any point along the ray r^ = 0 that is both inside the solid ellipsoid and inside the solid 

half-cone, the inequalities in the above proof are reversed and Tx < T2. 

Proof of Theorem 2: As f\2CM varies, the point where the solid half-cone and the solid ellip- 

soid first touch is contained in the plane that contains the cone axis, V2(0) and the ellipsoid 

axis, £2(0) -rj(0). In this plane, the cone becomes two rays based at £2(0). The angles 

between these rays and the cone axis are ±n2C0Mt- Let r be a vector along the ray with angle 

+rjo . This ray can intersect the planar ellipse at up to two points. When the two solutions 

coalesce, the cone and ellipse are tangent to each other. 

The law of cosines applied to the triangle with vertices rj(0), £2(0), and r can be written as: 

rj2 = r2
2 + r12

2 - 2 r2 r12 cos(T|2 - los) (30) 

The boundary of the solid ellipsoid is given by: 

HVi(0)ll     Tfa-, 
r = r9 (31) 

1       Uy^O)!!  SU1CT12.J    2 

Eliminating T1 in the above two equations gives: 

r22 + ri22 - 2 r2 ri2 cosft^ _ los) (32> 0 
_ rllXi(0)ll    ^    : 

||V2(0)|| sin(Ti2_) 

This quadratic equation has two solutions that give the normalized distance r2 along the cone 

ray. 

This quadratic equation has roots: 
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'12 

V COS(Tl2BM, ~ los) ± \/ COS^Tl^ - los) - (1 - [ 
IIYl(0)ll       ^ 
||V2(0)|| sinOi^ 

■?) 

(l-[ 
1IYI(Q)I1   ^ 
11X2(0)11 sin(Ti2_) 

]2) 

(33) 

The two roots coalesce when 

cos(Tl2OT« ~ los) = ± \ / (1 - [ ±Y 
llXi(Q)H   ^ 
11X2(0)11 sin(n2oMt) 

]2) (34) 

or 

I ■ r ,    M      »Xl(0)ll      ^ lsin(rb    - los) I = „„ ^N„   . ,  solve for Tb 
12«, 1^(0)11 sin(n2c<J 

,2OT
« 

(35) 

or 

HXi(0)H = «"(Tip 

IIY2(0)|| Tl2_ 
lsin^2OTt-

los)1 (36) 

HXi(°)ll 
To obtain the largest value of inT //vill for which solutions to equation 36 exist, note that 

11X2(0)11 

(.99-sin(i^))*J24<(Mos^<JC 

sin ftO 
*2coo« 

S^1!^ " l0S) <  (1.03 - sin(los/2))*.724 

and the maximum occurs at the value of Th^ given by: 

sin^T]^ - los) = vl/v2 2 branches for sin-1 (38) 

We need T]^ in the range 0 < los < T]?^* < t so we choose the branch with the largest 

value of T|2UMI, e.g. 

r^ = (jc-asin(vl/v2)+los)/2 (39) 
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The above bounds imply that: 

equation 36 has a solution if 
HYi(Q)ll 
IIY2(0)|| 

< .724*(.99 - sin(los/2))       (40) 

while 

equation 36 has no solution if 
llYi(0)ll 
HV2(0)|| 

£ .724*(1.03 - sinGos/2))     (41) 

After solving equation 36 for Tj2cooit, the location of the point where the solid ellipsoid and the 

solid half-cone just touch can be determined by: 

1 
*12      cos(rj2    - los) 

(42) 

ri2 
= tan(ri2c£M - los) (43) 

Examples: 

For fixed values of los, we can plot equation 36 to find the value of T]^ > los  that gives the 

IIV^O)!! 
largest value of 

l|V2(0)|| 

los = 1.57 rad = 90 deg      gives mm IIY2(0)|| 
4.60       at     712^=2.25   (44) 

los = 1.00 rad = 57 deg      gives     ™n ||^!L = 2.56       at     ^=1.87    (45) 

25 



Tight Bound 

The inequality in theorem 2 becomes an equality when 

Vi/V2 = 
max 

0<Ti2a30it<los<7ü 
sin(Tl2„ 

sm(Tio     - los) =  .742 (1 - sin(los/2))      (46) 

which occurs at 

rj^ =(K- sin_1(vl/v2) + los)/2 (47) 

The inequalities in theorem 1 become equalities when T^ = 0 and TJ2 = T|2conit (solution of 

equation in theorem 2).  This implies that the triangle with sides of length rlf r2, and r12 is a 

right triangle, since: 

Xi(0)     T^ rj 
.in^-lo.)-—^--k«- when   ^ = 0,       ^ = ^(48) 

To orient the Vj(0) vector in the direction that results in r^ = 0 at the point where the cone 

and ellipsoid meet, we need: 

1) Vj(0) must be in the plane spanned by the cone axis, V^O), and the ellipsoid axis, 

rz(0)-rj(0). 

2) VJXO) must be perpendicular to the ellipsoid axis, £2(0) - jj(0). 

This can be done by pointing V^O) along the direction: 

feCO)-!!«))) x  [(iv,(0)-rj(0)) x V^O)] (49) 
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3.4 Singularities on the Intercept Surface 

The two points ij(0) and £2(0) are both on the intercept surface. 

The function F(r) that defines the intercept surface is continuous everywhere except at the the 

two points ij(0) and £2(0). 

To determine if the intercept surface has any other singularities, we can examine the gradient 

of the function F(r) to see if it is bounded away from zero. Figure 5 shows a case where the 

intercept surface has a singularity. 

The following notation is useful in deriving the gradient of F: 

r-ü(O) 
1T = =——— i = 1,2 unit vectors (50) 

(r-*(())) x(r-rj(0))x WO) 
h; =   ^   -'     —^   -* -1 i=l,2 (51) 
-1     IKr-r^x^-r^xWO)!! 

Note that for each i, lj. and hj are unit vectors and are orthogonal to each other, so we can 

define the following rotation matrices: 

Q = ih, hi, ^ x hj i=l,2 (52) 

27 



V) 

c 
o 

•4—< c 
CD c 
o 
E 
o 
o 
c 
o 

o 
co 
CD 
"co 
CO 
Q. 
CD 
CO 
CO 
CD 

V-« 
CO 
CO 

•»—' 
CO 

CO 

> 
X 
co 
E 

CD 

d 

>-> 

> 
£ • 1-H 

T3 
o 
& | 

o o ■*-> 

«♦5 

u 
•c o 
bO 

"7i 
Ö o KS 

CJ 4-> U u ta > 
• F-l <u »H tr! w—l o C3 

OH tH »H 

i • 1-H 

X * * 
<u 

ID 

OJ 

c 

in 

I 

in- 

o- 

O    r 

((z/so|)uis - go* I) PZL' > ZNl* > ( te/so|)uis - 66') VZL 



The normal to the surface is given by the gradient of the function that defines the surface. 

dF _ <fri     ,   dr2      dk 
dr ~  dr dr       dr *2 

= ir1-klJ-
r2 

dk 
dr 

(53) 

To evaluate -—, recall that 
dr 

IIVjCOH   sinCTii)      ri2 

11X2(0)11      Til      sin(Ti2) 
(54) 

d     sin^t) sin^t)       i 1 

dTli      Tli Tl! Tli      tanOii) ■) 
(55) 

d _(_
Tl2 Tl2 1 

) = (-rfr) (-f- - 
1 

dT]2   sin(Ti2) sin(Ti2)     Tj2      tan(Tj2) 
-) 

Combining the above 3 equations gives: 

HVj^ll   sinflh)      7\2 dk 
dr 11X2(0)11      Tl!      sin(Ti2) <i 1 dTli 

(56) 

tan^j)    dr -(4-- 1       dT]2 

TJ2      tan(T|2)    dr 

= -k 
1       dT| 

)- Tl!      tanOlj)    dr <i 1       ,dTl2 
tan(T|2)    dr 

(57) 

The angle from the vector XJ(0) and r - jj(0) is T^, so 
dr 

is a vector of length 1/r;, perpen- 

dicular to r - rj(0), in the plane spanned by Xi(°) and r - £(0).  The unit vector hj, defined 

above, is in the appropriate direction, so 

d^li      1 , 
  =    h: 
dr       r; -

1 (58) 

29 



Combining the above equations [and noting that — = k when F(r) = 0 ] gives: 
r2 

dF 
dr lr + (- ■ ) hi -"    VT11      tanCTi!)'-1 - k L + (- - ) ho 

-*    Vri2      tändle'-2 

1 

tan(Th) 
0 

-kCo 

1 

Tl2 

1 
tan(Ti2) 
0 

Applying the triangle inequality to the above equation, we get: 

#||> Ji + (J--—L^- Ikl-Ji + (^ ^ 
dr"     V ill      tan(7i!) \ r|2      tan(Ti2) 

_ fll¥i(P)ll      % 
L 11X2(0)11   sin(Ti2) k l + ( 

T T 
Tj2      tan(Ti2) 

f 

(59) 

(60) 

The gradient cannot be zero in regions of space where X[2 satisfies: 

"H2 11Y2(Q)11      
HV^O)!! > sin(Ti2) V l + ( 

T 
r\2      tan(Ti2) 

)2 (61) 

This represents a half-cone region in front of the missile, up to an angle of rj2 from the velo- 

city vector Y2(0). This means that the intercept surface cannot have any singularities in that 

region of space, except at the point r = ij(0) where the function itself is discontinuous. The 

function is also discontinuous at the point r = ^(O), but that point is outside the T|2 bound 

given above. 

For   example,   if 
IIY2(0)|| 

IIYiCO)« 

Tl2< 1.97rad= 112deg. 

= 3   then   the   gradient   cannot   be   zero   in   regions   where 
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All possible singular points: 

In an earlier section, we showed that the 12-dimensional set of data: £(0), £2(0), VjCO), V^O) 

could be reduced to a 4-dimensional set by modeling out by the 6-dimensional Euclidean 

group of motions, scaling distance, and scaling time. For each point in the remaining 4- 

dimensional data set, we get a 2-dimensional solution set for r e R3. The vector equation, 

dF/dr = 0, is equivalent to 3 scalar equations, which give fixed points on the 2-dimensional 

solution set, and put a single condition on the 4-dimensional data set. Therefore, there is a 

3-dimensional set of degenerate data, that results in the solution surface having a singular 

point. This 3-dimensional set of degenerate data can be parameterized by the following rota- 

tion matrix: 

C = 
Cll C12 

c13 

C21 C22 C23 

C31 C32 C33 

= C!T Qz e SO(3) (62) 

The solution set is singular when 

0 = 
dF 
dr 

(63) 

i.e., 

1 
1 J  

T\i      tan(Th) 
0 

= k (C/ C2) 

1 
1 J  

ri2      tan(ri2) 
0 

1 
We can solve these three equations for k, — 

1 

Tli      tan(Th) 
and 

1 1 
Ti2      tan(T|2) 

(64) 

1 1 ~°3l 
Ti!      tan^j) c32 

(65) 
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1 1 -Cl3 

TI2      tan(Ti2) c13 

•V1+(i-^)2   V 
k=———-±———f—-  =   , (67) 

c13   o 
1 + (—)2 

C23 

The above three equations can then be used to solve for T^, TI2, and ||Vx C0)||/HV^CO^H as func- 

tions of C. These values of Tjj and T|2, give a point on the 2-dimensional solution set. The 

4-dimensional data set was parameterized by IIVjCOWIIV^O)!!, los-angle, and _lVi 
e S2. 

3.5 Acceleration Constraints for the Pursuer 

In this subsection, we will look at two things. First we will derive a bound of the form: 

vl/v2 < function(los,accel_limit) (68) 

that guarantees that the pursuer will not violate its acceleration constraint anywhere on the 

selected component of the intercept surface. Second, we will derive a set of nonlinear equa- 

tions whose solution gives initial conditions and a point on the intercept surface where the 

pursuer's acceleration constraint is just reached. Figures 6-9 show acceleration constraints on 

the intercept surface. 
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Figure 6: Acceleration Limits On Pursuing Missile 

max v1/v2 to guarantee:   (Solid) Separate sol components.   (Dotted) accel2 < [0.79,1.00,1.39] 
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To determine the bound vl/v2 < function(los,accei_limit), we start with the equation that 

defines the intercept surface: 

sinOii) sin(Ti2) 
vl/v2 = (rl/r2)- 

Tli Tl2 
(69) 

and the equation that defines the surface of constant acceleration for the pursuer, vehicle 2 

2HV2(0)||2 sin(Ti2) 
HY2(0)|| = — ~ (70) 

In equation 69, we can rewrite rl as: 

ri = ll(r-r1(0))H 

= ll(ri(0)-r2(0))-(r-r2(0))|| 

= llfc<P) - SCO)) - [lv2, lvrL] r2 1^11 

= Il[lv2. l^f (£i(0) -S(P)) - r2 JLn^cJI 

11*12 
cos(los) 
sin(los) 

.    0    . 
"r2 

COS(TJ2) 

sin(Ti2)cos(C2) 
sin(Tj2)sin(C2) 

Putting this expression for r: into equation 69 gives: 

sin^t) 

Til 
vl/v2 = ||(r12/r2) 

cos(los) 
sin(los) 

.    0    . 

cos(T[2) 
sin(rj2)cos(C2) 
sin(Ti2)sin(C2) 

sin(Ti2) 

Tl2 

Solving equation 70 for r2 and putting that into equation 72 gives: 

sinOlj) 

Til 
vl/v2 = 

11X2(0)11 

WYl, r=r,(0), Tii=7t/2ll 

cos(los) 
sin(los) 

.    0    . 
- sin(Ti2) 

COS(T|2) 

sin(Ti2)cos(C2) 
sin(T(2)sin(C2) 

where 

J_ 
Tl2 

(71) 

(72) 

(73) 
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11^2, r=r,(0), Ti2=iü2ll ~ 
2iiy2(Q)ii2 

r12 

The right-hand side of equation 73 is minimized when £2 
= 0- If we consider examples 

where the V^O) vector is rotated till Td = 0 at the point where the intercept surface and the 

acceleration constraint surface just touch, we get: 

min   „   11X2(0)11    rcosOos)]      . (<n , 
>^^--o5SJ^-S 

COS(T|2) 

sin(ri2) 
J_ 
T\2 

(75) 

Actually, the min should be taken over the restricted interval: 

min 
0<rj2<(3 los + JC)/4 

to ensure that we are finding the intersection of the constant accel2 surface with the com- 

ponent of the intercept surface that contains ij(0). 

Equation 75 gives the value of vl/v2 that corresponds to the intercept surface just touching 

the accel constraint surface. Larger values of vl/v2 could result in either larger or smaller 

values of max acceleration. To eliminate cases where smaller values of vl/v2 result in larger 

accelerations, we can set 

vv *' v^accel<constraint 

0     whenever      sinCn^^) > 
IY2II 

2iiy2(0)ii2 

r12 

(vl/v2)touch    whenever     sin^^) < j 
IIV2II 

2||V2(0)||2 

r12 

(76) 
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Examples where acceleration constraint is just met 

Constraining a vehicle to a fixed acceleration magnitude, means that it will be on a fixed 

radius circular path (tangent to its velocity vector). The set of all such circular paths forms a 

2-dimensional surface. The fixed value of acceleration that just causes this surface to touch 

the intercept surface is the max acceleration on the intercept surface. To solve for the inter- 

section point of these two tangential surfaces, we must set the gradient of the constant 

acceleration surface, equal to a constant times the gradient of the intercept surface. The mag- 

nitude of the acceleration on the two surfaces must also be set equal. This gives 3 equations 

to solve for the magnitude of the acceleration and the point on the two-dimensional intercept 

surface where that acceleration occurs. 

The acceleration of vehicle i is given by: 

accel; = [L, hj] 
sinOli) 
cosCrii) 

2||Vi(0)||2 sinCTii) 
(77) 

so the magnitude of the acceleration is constant on the 2-dim surface defined by the function: 

2||Vi(0)||2 sind;) 
llacceljH = (78) 

For fixed values of HacceljH, the gradient of this function is: 

_d_ 
dr 

2||Vi(0)||2 sinOli) 
= Ux, hi! 

-sinCHi) 
cosOij) 

2||Vi(0)||: 

= C: 
-sinOli) 
cos(Tii) 

0 

2||Vi(0)||2 

(79) 

dllaccel?]! dp ,        ,  , 
Setting a scalar times     equal to —— gives three equations for that scalar and the 

dr dr 

touch point on the 2-dimensional intercept surface: 
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or 

C2 COS(TI2) 

0 
=   C, 

J_ 
Hi 

1 
tanCtij) 
0 

Til tanOli) 
0 

=   (C^Cj) 
J_ 
T\2 

C2 

1 

Tl2 

1 
tan(Ti2) 
0 

1 -sin(Ti2) 

1 
tan(Ti2) 

0 

cos(Ti2) 

0 

(80) 

(81) 

Solving for 
1 

Since 

1 
Til      tan(Tl!) 

, k, and a,, gives: 

1 1 -C13 

Tij      tan^)       C23 

T\2 

sin(Ti2) 

COS(Tl2) 

1 

T\2      tan(Ti2) 

sin(Ti2) 

]       1 

cll   c21 

c12   c22 

T\2 

sin(Ti2) 

COS(Tl2) 

1 1 
T)2      tan(ri2) 

sinOlj) 

]       1 

J_ 
Til tan(Ti!) 

en - -c21 
Cl3 

c23 

c12- - c22 
Cl3 

c23_ 

k = 
IIV^O)!!   sindij)      T]2 

||V2(0)||      Th       sin(Ti2) 

we can combine equation 85 with the top half of equation 83 (for k) to get: 

(82) 

(83) 

(85) 
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IIVjCO)!!   sinfti) 

l|Y2(0)||        Tl! 
= [COS(TI2),  sin(T]2)] 

en - C21 

c12 ~ c22 

'13 
c23 

Cl3 
c23 

(86) 

In the next two sections, we will present both iterative and closed-form techniques for calcu- 

lating points on the two-dimensional surface defined by the scalar equation F(r) = 0. 
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4. Iterative Algorithm for Computing the Intercept Surface 

This section defines an iterative algorithm for computing the radius, rj, along each fixed unit 

vector, i^j^j, such that the vector r = ij(0) + rj L^,^ is on the intercept surface. 

From equations 8 and 9, 

r^lt-üCO)!! r2 = |(r- fi(0)|| (87) 

Using the law of cosines on the triangle with vertices ij(0), £2(0) and r, we can write r2 as a 

function of rlt Tjj, ^: 

r2
2 = rj2 - 2 cos(())) r: ||rj(0) - ü(0)|| + 1(^(0) - ^(O)!!2 (88) 

where <{> is the angle between the vectors ij(0) -£2(0) and r - rj(O).  This angle is fixed dur- 

ing the iteration, since the unit vector along r-ij(0) is only a function of T^ and C,x. 

From equation 8, we also see that TI2 is the angle between ^(0) and r - ^(0), so T|2 can 

written as a function of r^ %, ^: 

rV2(0).(r-r2(0)) 
TI2 = cos 1 

HV2(0)||||r-t2(0)|| 

where 

r-r2(0) = [rJ(0)-r2(0)]+r1 
Vi(0) 

IIV^O)!! 
, Y^O)-1 

cosOii) 
sin(Ti1)cos(Ci) 
sinCTi^sinCCi) 

(89) 

(90) 

Given fixed values for (Th.^), and an initial value for rlt we can use equations 87-90 to 

evaluate r2 and r\2, and use equation 12 to evaluate the new value of r^ This gives an itera- 

tion for rj. 
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If we use Tij and £i as coordinates on the two-dimensional intercept surface, we can use the 

iteration defined above to solve for the corresponding values of r^ Then equation 8 gives the 

Cartesian coordinates of the point. 

When TJ! = 7t, equation 12 is satisfied by rj = 0. This point is on the intercept surface 

because the evading aircraft could fly on any circle just large enough so that the aircraft 

returns to its starting point in the time it takes the missile to get to the aircraft's starting point 

In the iterative procedure, we will make use of the following formula for r\2 in terms of los 

and y: 

Y2(0)T 

r2COS(7l2)=ii^)ii[I~l2(0)] 

Y2(0)T Y2(0)T (91) 
-*       fcCO) - SCO)] + -j^-^r [r - rj(0)] 
||V2(0)|| l-JV      -^ liV2(0)|| 

= r12 cos(los) + r: cos(y) 

To determine a two-dimensional array of points rjCrji.,^.) on the intercept surface and evalu- 

ate the cost functional at each point, we can use the following procedure (given in more detail 

later): 
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kO = (vl/v2)*sin(etal)/etal 

cos_los = - x2_minus_xl_unit dot V2_unit 

Setr1(T]li,Cii) = 0 = r1(Til2,Cli) 

Forj = 0to30 

Tij = ((30-j)/30)(7c) + e    e>0 to avoid (sin(0))/0 

sei = sin(etal)      eel = cos(etal) 

For i = -30 to 30 

^=(^30)71 

szl = sin(zetal)      czl = cos(zetal) 

x_minus_xl_unit = [Vl_unit, Vl_perp]*[cel, sel*czl, sel*szl] 

cos_phi = x2_minus_xl_unit dot x_minus_xl_unit 

cos_gam = V2_unit dot x_minus_xl_unit 

Initialize r2 = 212(11!. ^^ - r^Th. 2X\)       (linear extrapolation) 

Do four iterations of: (equations 12 and 87-91) 

rl_over_r2_old = rl_over_r2 

r2_over_rl2 = sqrt(rl_over_rl2*2 -2*cos_phi*rl_over_rl2 + 1) 

eta2 = acos((cos_los+rl_over_rl2*cos_gam)/r2_over_rl2) 

k_of_eta = kO * eta2 / sin(eta2) 

rl_over_rl2 = k_of_eta * r2_over_rl2 

rl(ij) = rl_over_rl2*rl2 

i2(i j) = r2_over_rl2*rl2 

Tl = (rl/vl) * etal / sin(etal) 

T2 = (r2/v2) * eta2 / sin(eta2) 

accell(ij) = 2 * etal * vl / Tl 

accel2(i j) = 2 * eta2 * v2 / T2 

End i loop 

End j loop 

save (i j) if max time 

Tl = T2 if converged 

(angle*radius=v*T   accel=v*v/r) 

(angle*radius=v*T   accel=v*v/r) 

r 

r 
I; 

I 
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accel; = [1,., hj] 
sin(Tii) 
cosCnj) 

2Tlil|V:(0)|| 
''"-' i = 1,2 (92) 

T: 

so 

.. 1H 2HVi(°)H2 Si*fri> •        ,    , m, HacceljH =  l = 1,2 (93) 
ri 

If we assume 10 floating-point operations each for computing atan2, sin, and sqrt, then 

evaluation of the inner loop equations takes approximately 31 floating-point operations. 

Doing 4 iterations on a 30 x 60 grid requires a 31*4*30*60 = 223,000 floating-point opera- 

tions. The outer loops of the iteration account for an additional 27,000 floating-point opera- 

tions. This gives a total of approximately 250,000 floating-point operations. A 1 Mflop com- 

puter could update this guidance algorithm at 4 Hz. 

Convergence of Iteration 

Theorem 3: The iteration converges at points on the solution surface where: 

(r-r1(0))T-^i<0 (94) 
dr 

i.e., whenever the surface is star-shaped. 

Proof: 

The iteration is of the form: 

'!„. = Gfrw ix.) 05) 

where 1, is a unit vector based at the point rj(0), and ^ is the distance along that unit vector. 

For each fixed value of the unit vector, the iteration has a fixed point at the value of T{ that 

gives the point on the solution surface: 
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r = r1(0) + r1lIi (96) 

We define the function G by: 

G = rj - F(r) = k r2 (97) 

Then 

dG ■_• 1--dF 
dfi drj 

h>    dr 

1- 1 - k LTn    hj _1_ 

Tl2 tan(ri2) 

k ^[^ hj 1 
1 1 

Tj2      tan(Ti2) 

(98) 

The iteration converges when I-—I < 1, which is ensured when 
drj 

k -v/l + (- l-—)2 < 1 
\ T]2      tan(T]2) 

(99) 

or 

11X2(0)11   ^        Tl2 

IIV^O)!!      sin(Ti2) V 1 + 
1 1 

T\2      tan(Ti2) 
(100) 

Note that this is the same bound found for ensuring that the intercept surface had no singulari- 

ties in regions of space (values of rj2) that satisfied the above inequality for some given 

11X2(0)11 
IIY^O)!!' 
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Finally, 

! T dF =1_dG >0 whenever l-^-l<l (101) 
-ri    dr dr2 dix 

T dF 
So the iteration converges whenever l^1 — > 0 

Note that the function —- has value 0, and slope +1 at TI2 = 0, and is monotoni- 
T\2      tan(Ti2) 

cally increasing, going to infinity at "n2 = TC. 

The function k(T|2) is monotonically increasing as T|2 goes from 0 to TC.   The function k(T|2) 

goes to +oo as T[2 goes to TC. 
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5. Algebraic Algorithm for Computing the Intercept Surface 

For cases where the iteration defined in the previous section does not converge, we can solve 

algebraically for all points on the two-dimensional intercept surface in R3. We can use Tjj 

and T[2 as coordinates on the two-dimensional surface. For fixed T^ and r|2, equation 12 

defines an ellipsoid in R3. Equation 8 indicates that fixing r^ defines a circular cone in R3 

with vertex at jj(0) and axis-of-symmetry V^O). Equation 8 also indicates that fixing r\2 

defines a circular cone in R3 with vertex at £2(0) and axis-of-symmetry V^O). The intersec- 

tion of these three quadratic surfaces in R3 results in 8 (some possibly complex) solution 

points for each fixed pair (Hi/r^). 

To get three second-order algebraic equations, we will use Cartesian coordinates for the ellip- 

soid in equation 12, and for the two cone equations: Tjj = constant, TI2 = constant. Squaring 

equation 12 gives: 

2_ Ill-iiCO)!!^ 
liy^O)!! ri2 sin(Th) 

||V2(0)|| TU sin(ri2) 
Ur-l2(0)||2 (102) 

If we let: 

k = 
liy^O)!! 7]2 sin(Th) 

||V2(0)|| TIJ   sin(Tl2) 

then equation 102 becomes: 

it-ZiCO)!!2 = k2 l(r - i^(0)i|2 

which is a second-order algebraic equation for a circular ellipsoid in R . 

(103) 

(104) 

Setting TJi = constant gives a circular half-cone with vertex at jj(0) and axis-of-symmetry Vj(0) 
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h li(0) Vi(0) = cosCiii) ||Vi(0)|| ||r -£(0)||        i=l,2 (105) 

Squaring equation 105 gives a second-order polynomial equation: 

0 = [r - ri(0)]T [vl(0)Vi(0)T - I cos2^) UVj(0)||2 r-rj(O) i=l,2 (106) 

Equation 106 is for a full cone, instead of a half-cone, since the sign of cos(Tii) is ignored. 

Together, equations 104 and 106 are three second-order equations in the three Cartesian com- 

ponents of r.   By Bezout's theorem, we expect up to eight solutions for each fixed set of 

(1i.il2)- 

To solve the three equations, we first rotate, translate, and uniformly stretch the coordinates to 

move the two cone vertices to x = ±1: 

l!(0) -> 12(0) -> 
-1 
0 
0. 

(107) 

We then rotate the coordinate system about the x axis (leaving the above two points fixed) till 

V^O) has no z component. 

In this new coordinate system, let: 

x 
y 

Lzj 
= r 

Yi(0) 
cos^iiy,^)!! 

Ya(0) -12' 
cosCn2)i|V2(0)ii 

(108) 

The three second-order equations can then be written as: 
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0 = 

x-1 
x+1 

y 
z 

-10 0 0 

0   k2 0 0 

0    0 k2 - 1 0 

0    0 0 k2 - 1 

x-1 
x+1 

y 
z 

ellipsoid 

0 = 

x-1 
x+1 

y 
. z . 

a2-l 0 ab 0 
0 0 0 0 

ab 0 b2 - 1 0 
0 0 0 -1 

x-1 
x+1 

y 
z 

cone! (110) 

0 = 

x-1 
x+1 

y 
z 

0 0         0 0 

0 d2 - 1     de d f 

0 de e2 - 1 e f 

0 d f       e f f2 - 1 

x-1 
x+1 

y 
. z . 

cone2 (111) 

To continue the solution process, we introduce a bi-rational transformation: 

Y 
l 

x-l" 
x+1 X 1 u+l" 

y 2v 
V x-1 y 7, u-1 ?,w LwJ L.  z J 

(112) 

Since this only differs by a scalar from the old 4-vector, the three matrices in equations 109, 

110, and 111 remain unchanged: 

0 = 

-10 0         0 

0   k2 0         0 

0    0 k2 - 1      0 

0    0 0 k2 - 1 

ellipsoid (113) 
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0 

a2 - 1 0 ab      0 
0 0 0       0 

ab 0 b2 - 1   0 
0 0 0-1 

cone 
(114) 

l 

0 = 

0 0 0 0 

0 d2 - 1 de d f 

0 de e2 - 1 e f 

0 d f e f f2 - 1 

cone2 (115) 

The next step in the solution is to get a combination of equations 113 and 114 to be of the 

form: u2 = f(v) and w2 = g(v) where f(v) and g(v) are quadratic polynomials in v. Then 

equation 115 will be both rearranged and squared two times to get a fourth-order equation in 

(u2, v2, w2). By replacing u2 and w2 with f(v) and g(v), we then get an eighth-order polyno- 

mial in v alone. The eight v solutions can be used to obtain the eight corresponding values of 

u and w. 

Taking equation 113 plus k2-l times equation 114 gives an equation of the form u2 = f(v): 

k2 u2 = 1 - (k2 - 1) [(a2 - 1) + 2 a b v + b2 v2] (116) 

Equation 114 is already of the form w2 = g(v): 

w2 = (a2 - 1) + 2 a b v + (b2 - 1) v2 (117) 

We are now ready to begin working on getting equation 115 in the form of a fourth-order 

equation in (u2, v2, w2). We begin by using M to denote the 3 x 3 nonzero submatrix in 

equation 115. 
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0 = 

mll   m12   m13 

m12   m22   m23 

m13 m23 m33 

u 
V 

Lwj 
(118) 

Rearranging equation 118 gives: 

mll   m12 

mi2 m22 
+ w m33 w = -2 w [m13, m^] (119) 

Note that when the [^(0)^2.(0)y_i(0),yj(0)] data is planer, we get f=0, so m13 = 0 = 0123. In 

that case, we can separate the uv dependence in equation 119, replace u2 and w2 with qua- 

dratic polynomials in v, then square the resulting equation to get a quartic equation in v. 

For the non-planar case, we can square both sides of equation 119 to get: 

12 * 

< u T mll   m12 

m12 m22 
u 
.v. + m33 w* \ = 4w2  u 

y 

ml3 
m23 

[m13> m^] (120) 

Expanding and rearranging equation 120 gives: 

w2 

m 11 

symmetric 

mnm22+2m12; ^„-W 

m33m22-2m23 

2 

m22 

m l33 

U" 

W 

= 4 u v [-m^mj! u2 - m12m22 v2 + (2m13m23 - m33m12)w2] 

(121) 

Squaring both sides of equation 121 gives: 

0 = 
u4 T 

u4 u4 
T 2 2 V   w 

V4 A v4 + 4 v4 B 2     2 

w4 w4 w4 2 2 Uz Vz 

(122) 
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where the entries of A are given by: 

ay = my4 i = 1,2,3 
(123) 

ay = 3mü
2m/ + Sm^niij2 - m^) 

and the entries of B are given by: 

bH = mii
2(3mijmkk - 2rc^) - 4mii(mjjmik

2 + m^my2) + 8mikmij(2miimjk - m^) 
(124) 

by = mjfimtfOfr - 2mik
2) (ijjk) cyclic permutation of (1,2,3) 

If we substitute equations 116 and 117 into equation 122 for each occurrence of powers of u2 

and w2, we get an eighth-order polynomial in v alone. We can put the coefficients of this 

polynomial into an 8 x 8 companion matrix, whose eigenvalues will be the roots of the poly- 

nomial. 

If we substitute equations 116 and 117 into equation 121 for each occurrence of uz and vr, 

we get a linear equation in u, whose coefficients are polynomials in v. By evaluating these 

coefficients with the 8 values of v found above, we get the 8 corresponding values of u. 

If we substitute equations 116 and 117 into equation 119 for each occurrence of u2 and w2, 

we get a linear equation in w whose coefficients are polynomials in u and v. By evaluating 

these coefficients with the 8 values of u and v found above, we get the 8 corresponding 

values of w. 

Finally, we can use the right part of equation 112 to convert [u,v,w] back to [x.y.z]. This 

gives us the [x,y,z] values on the two-dimensional intercept surface for each value of the 

Oll» I2) coordinates. 
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A numerical example is given below. 

Input Data: 

rl_ =[0.5163; 0.3190; 0.9866] 

r2_ =[0.0606; 0.9047; 0.5045] 

Vl_ = [0.2363; 0.0490; -0.1546] 

V2_ = [0.0782; -0.3340; 0.3554] 

etal = 1.5407   \ 

eta2= 0.5354 

i 

Computed Results: . 

k =   0.5802 f 
i' 
y 

los =   0.4000 

nonn(Vl_)/nonn(V2_) =   0.5802 £ 

eta2c = (pi - asin(norm(Vl_)/norm(V2J) + los)/2   =     1.4613 

(nonn(V2_)/norm(Vl_))*(sin(eta2c)/eta2c)*sin(eta2c-los)  =    1.0236 L 

def = V2/(norm(V2)*cos(eta2)) = [1.0709; -0.4527; 0.0071] 

abO = Vl/(norm(Vl)*cos(etal)) = [0.5895; 33.2048;   0   ] 

order8_poly = 1936656295. 290948514. -27327350. -4381463.6    173893.7 

22468.886   -702.23409   -39.84748     1.34520 

uv0_coeff = 55649.908255   3712.345422 -424.606279 -17.178161    1.15982968 

uvl_coeff = 440.828064411611    15.485303259795 -2.088513070591 

[ w0_coeff, wl_coeff ]  = [ 0.12675655356533, 0.07321379932120 ] 
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uvw = 

8.3079 -0.1243 3.4003 

6.3804 -0.0991 -2.5165 

-7.3963 0.0773 -2.9874 

-5.8503 0.0571 2.2673 

-4.9642 -0.0805 -1.8345 

-4.4625 -0.0738 1.5786 

5.3506 0.0505 2.0264 

4.7569 0.0426 -1.7313 

% Bi-Rational transformation 

x(j) = (uG)+D/(u(j)-i); 

yC)= 2*v(j)/(uG)-l); 

z(j)=   2*w(j)/(uO>D; 

xyz = 

1.2737 -0.0340 0.9306 

1.3717 -0.0368 -0.9354 

0.7618 -0.0184 0.7116 

0.7080 -0.0167 -0.6619 

0.6647 0.0270 0.6152 

0.6339 0.0270 -0.5780 

1.4597 0.0232 0.9315 

1.5323 0.0227 -0.9217 

These eight solutions also satisfy the HALF-cone restrictions of equations 105. 
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The computational cost of evaluating equations 103, 108, 118, 123, and 124 is approximately 

240 floating-point operations. The cost of computing the eigenvalues of an 8 x 8 companion 

matrix is approximately 4 * 83 = 2048 floating-point operations. The cost of back-substitution 

into equations 121, 119, and 112 is approximately 70 floating-point operations. This gives a 

total of approximately 2400 floating-point operations for each fixed set of (r\lt T|2). If we use 

a 30 x 30 grid for (T^, TI2), then the total computational cost is approximately 2.1 million 

floating-point operations. This is approximately eight times as expensive as the iterative solu- 

tion. A 2 Mflop computer could update the algebraic solution of the guidance algorithm at 

approximately 1 Hz. 

Degeneracy in Back Substitution: 

When equation 122 (the eighth-order polynomial in v) is the square of a fourth-order polyno- 

mial, equation 121 (made linear in u) gives a single u for each of the four v roots. However, 

back-substitution equation 119 (made linear in w) reduces to 0 = 0, in which case we can use 

equation 117 which gives two w solutions for each of the four separate (u,v) pairs. 

When equation 122 (the eighth-order polynomial in v) is the fourth power of a second-order 

polynomial, back-substitution equations 119 (made linear in w) and 121 (made linear in u) 

both reduce to 0 = 0, in which case we can use equations 116 and 117 which give four (u,w) 

solutions for each of the two separate v roots. 

r 
j 
I 
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6. Examples 

Figures 10 through 14 at the end of this section are from an example where the missile's 

acceleration constraint is not exceeded anywhere on the intercept surface (except near the 

end-game). Since the evading aircraft is slower than the pursuing missile, and the missile is 

not on an acceleration constraint, the aircraft is completely enclosed by the intercept surface 

and cannot escape. Therefore the aircraft heads for the point on the intercept surface that 

results in the longest intercept time (in hopes that the missile's fuel runs out). The missile 

assumes that the aircraft has headed for the point with the longest intercept time, so the mis- 

sile also heads for that point 

The guidance algorithm itself could update at 80 Hz on the 120 MHz Pentium that it was run- 

ning on, but drawing the smoothly-lit color intercept surface on the screen each time took .5 

seconds, so in this example, the intercept surface was only recomputed every .5 seconds. 

Each .5 second, both vehicles get to pick new values for their optimal constant normal 

acceleration inputs. In this example, it takes 38 seconds for the missile and aircraft to inter- 

cept 

Figures 15 though 18 are from the second example. In the second example, the same initial 

positions and velocities were used as in the first example, but the aircraft makes no attempt to 

maneuver. The aircraft flies on a straight path, while the missile still assumes that it will head 

for the point on the intercept surface corresponding to the longest intercept time. The inter- 

cept surface shrinks to a point as time progresses, causing the point the missile is headed for 

and the point the aircraft is headed for, to come together. Since the aircraft has not headed 

for the point that would result in the longest time to intercept, intercept occurs sooner than in 

the first example (29 seconds instead of 38 seconds). 

Both of the above examples were done using the iterative solution for the intercept surface. 
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Near the lower-right comer of figures 10 through 18 is printed an error, e.g. error = .0013 in 

figure 10. This is the amount that rj changed on the fourth (final) iteration. The vehicles 

start out around 8 "units of length" apart in each of the two examples, and the error is meas- 

ured in those same units. 
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Example 1(5 frames from a simulation, update rate = .5 seconds) 

Aircraft on piece-wise circular path 

Missile on piece-wise circular path 
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Example 2(4 frames from a simulation, update rate = .5 seconds) 

Aircraft on straight line path 

Missile on piece-wise circular path 
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7. Summary 

The proposed mini-max pursuit-evader algorithm allows both vehicles to maneuver in 3D 

space and yet is fast enough to run real-time on today's flight computers. It also allows for 

the possibility of providing the pilot of either a missile-launching aircraft, or a missile-evading 

aircraft, an intuitively clear display of the current intercept surface with constraints and cost- 

functional clearly displayed. This information can be used to help the pilot make a missile 

launch decision. 

The drawback of using the algorithm on the missile itself, is that the missile would need velo- 

city and range measurements, either from its own sensors or from the launching aircraft. 

We intend to further investigate this guidance algorithm and its behavior for various types of 

constraints, cost functionals, and initial conditions. We also would like to compare the results 

to more conventional mini-max pursuit-evader algorithms that do not make the piece-wise 

constant speed, piece-wise constant acceleration assumptions that we have used. 

The bounds of the form: vl/v2 = H(los) for acceleration limits and for convergence of the 

iteration should be extended to the case were there is more than one arc in the piece-wise cir- 

cular trajectories. 
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Abstract: A three-dimensional pursuit-evasion game between a realistic missile and an air- 

craft is studied employing point-mass models for both vehicles. Since a direct method to solve 

this complicated mini-max problem is too time-consuming, the study is conducted by carrying 

out massive simulations in the parameter space of initial conditions and guidance law parame- 

ters. The important role of information in the opponent's acceleration to the game and the 

effectiveness of the strategy in rotating the line-of-sight vector are shown. It is found that 

there exist very few cases where the aircraft can avoid the missile, among them typical air- 

combat maneuvers such as linear acceleration, high-g barrel roll, split-S, and horizontal-S. 

(Author abstract) 9 Refs. 

Tide: Game optimal guidance law synthesis for short range missiles. 

Author: Green, A.; Shinar, J.; Guelman, M. 

Corporate Source: Technion-Israel Inst of Technology, Haifa, Isr 

Source: J. of Guidance, Control, and Dynamics v 15 n 1 Jan-Feb 92. p 191-197 

Abstract: A horizontal pursuit-evasion game of kind in the atmosphere between a coasting 

pursuer with a final velocity constraint and a maneuvering evader of constant speed is 
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considered. For this model, which is suitable to describe short range missile engagements, the 

adjoint equations can be integrated analytically. This allows us to determine the optimal stra- 

tegies of the players on the boundary of the capture set, called the barrier, as a function of the 

current and final values of the state variables. The main effect of the pursuer's final velocity 

constraint, an important realistic parameter, neglected in previous studies, is a substantial 

reduction of the capture zone. However, based on this game solution, a feedback guidance ; 

law, suitable for real-time implementation, can be synthesized and compared to other guidance 

laws. The results show that the corresponding capture set is much larger than the firing ■- 

envelope of a similar missile guided by proportional navigation with the same final velocity 

constraint. (Author abstract) 9 Refs. I 

i 

Title:  Proceedings  of the 4th International Symposium on Differential Games and Appli- 

cations. .' 

Author: Anon (Ed.) 

Conference   Tide:   Proceedings   of   the   4th   International Symposium on Differential 

Games and Applications 

Conference Location: Helsinki, Finl   Conference Date: 1990 Aug 9-10 

Source:   Lecture   Notes   in   Control and Information Sciences v  156 1991.   Publ by } 
1 

Springer-Verlag Berlin, Dept ZSW, Berlin 33, Ger. 292p 

-Abstract: This conference proceedings contains 29 papers. The papers address topics in       ...   | 

differential games and applications. The papers discuss two main categories: classical zero- 

sum differential games on computational questions as well as engineering applications, and 

economics and management problems. Many of the papers discuss pursuit-evasion games as 

applied to air combat. 

Tide:  Application of stochastic  differential  games to medium-range air-to-air missiles. 

Author: Yavin, Y.; De Villiers, R. 

Corporate Source: Univ of Pretoria, Pretoria, S Afr 
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Source: Journal of Optimization Theory and Applications v 67 n 2 Nov 1990 p 355-367 

Abstract: Stochastic differential game techniques are applied to compare the performance of 

a medium-range air-to-air missile for three different thrust-mass profiles. The measure of the 

performance of the missile is the probability that it will reach a lock-on point with a favorable 

range of guidance and flight parameters during a fixed time interval [0,tf]. 

Title: New results in optimal missile avoidance analysis 

Author(s): Shinar, J.; Tabak, R. 

Author Affiliation: Technion-Israel Inst. of Technol., Haifa, Israel 

Journal: J. of Guidance, Control, and Dynamics, 1994 v.17, no.5   p. 897-902 

Publication Date: Sept.-Oct. 1994     Country of Publication: USA 

Abstract: Two-dimensional optimal avoidance of a proportionally guided coasting missile 

of first-order dynamics by a constant speed aircraft is analyzed. This model allows us to 

investigate the "missile outrunning" and "end-game evasion" maneuvers in the same 

engagement. Three regions of different optimal missile avoidance strategies are 

identified. All strategies are based on some compromise between the principles of "missile 

outrunning", bleeding energy from the missile and minimizing the closing velocity and the 

principles of optimal "end-game evasion", a final maneuver of a critical duration perpen- 

dicular to the line of sight A synergetic interaction between aerodynamic drag and gui- 

dance dynamics increases the sensitivity of a missile guided by proportional navigation to 

evasive target maneuvers. Because of the missile aerodynamic drag, the aircraft can reduce 

missile maneuverability by an "outrunning" maneuver so that in the "end-game" a larger 

miss distance can be generated. The fresh insight gained by this investigation provides 

important cues for both aircraft and missile designers.  (14 Refs) 

Title: Game optimal guidance law synthesis for short range missiles 

SHINAR,   J.   (Technion - Israel Institute of Technology, Haifa); GUELMAN, M. (Rafael 
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Armament Development Authority, Haifa, Israel); GREEN, A. 

J.  of Guidance, Control, and Dynamics, v. 15, Jan.-Feb. 1992, p. 191-197. 

Country of Origin: Israel   Country of Publication: United States 

Documents available from AIAA Technical Library 

A horizontal pursuit-evasion game of kind in the atmosphere between a coasting pursuer 

with a final velocity constraint and a maneuvering evader of constant speed is considered. 

For this model, which is suitable to describe short range missile engagements, the adjoint 

equations can beintegrated -■-analytical-ly-Thts-al-lows-äie-optimal-'-strategies-- of- the-players on 

the boundary of the capture set, called the barrier, to be determined as a function of the 

current and final values of the state variables. The main effect of the pursuer's final velo- 

city constraint is a substantial reduction of the capture zone. However, based on this 

game solution, a feedback guidance law, suitable for real-time implementation, can be 

synthesized and compared to other guidance laws. The results show that the corresponding 

capture set is much larger than the firing envelope of a similar missile guided by pro- 

portional navigation with the same final velocity constraint. (Author) 

Title: Game theory for automated maneuvering during air-to-air combat 

AUSTIN, FRED; CARBONE, GIRO; HINZ, HANS (Grumman Corporate Research 

Center, Bethpage, NY); LEWIS, MICHAEL (NASA, Ames Research Center, Moffett Field, 

CA); FALCO, MICHAEL 

Grumman Aerospace Corp., Bethpage, NY. 

(AIAA Guidance, Navigation and Control Conference, Monterey, CA, Aug. 17-19, 

1987, Technical Papers. Volume 1, p. 659-669) 

Journal of Guidance, Control, & Dynamics, v. 13, Nov.-Dec. 1990, p. 1143-1149. 

Title: Avoidance of detection in 3-D. Pursuit-evasion differential games, III. 

Authors: Zheleznov, V. S., Ivanov, M. N., Kurskii, E. A., Maslov, E. P. 

Author Affiliation: Institute of Control Sciences, 117806 Moscow, Russia 
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Computers &Mathematics with Applications. An International Journal, 1993, 26, no. 6, 

55-66. ISSN: 0898-1221    CODEN: CMAPDK 

The problem of avoidance of a moving spatial zone in 3-D is considered with the assump- 

tions: (1) the pursuer (P) and an evader (E) are moving in 3-D, (2) E is capable of instantane- 

ous simple turns with velocity vector (v), and (3) P moves with constant (unit) velocity along 

a straight line. A spatial detection zone, which is the intersection of an ellipsoid and an ellip- 

tic cone, is attached to P. The evader's goal is to avoid the detection zone. The authors define 

a moving system XYZ, its origin is affixed to P and the X-axis is in the direction of P's velo- 

city in R3. The X- and Y-axes are located in the horizontal plane. 

The problem is reduced to an optimal control problem with pay-off and terminal conditions. 

The formulation of this problem is not a new one, as it considers the problem of detecting 

E by a constrained P carrying a radar system. Such problems were studied by the reviewer [in 

Proceedings of the 21st IEEE Conference on Decision and Control (Orlando, FL, 1982), 191- 

-194, IEEE, New York, 1982; CCA 1983:11527] and by T. L. Vincent [in The theory and 

application of differential games (Coventry, 1974), 267-279, Reidel, Dordrecht, 1975; MR 

58#26100]. 

Reviewer: El-Arabaty, Moustafa (Cairo) 

Proceedings Reference: 94b#90108; 1 232 257 

Pursuit-evasion differential games, in. 

Edited by Y. Yavin and M. Pachter. Comput. Math. Appl. 26 (1993), no. 6. 

Contributors: Yavin, Y.; Pachter, M. 

Publ: Pergamon Press, Oxford, 

1993, pp. v-x and 1-152. ISSN: 0898-1221    CODEN: CMAPDK 

Pursuit-evasion differential games,; Special Issue: Pursuit-evasion differential games,   3 3 

The twelve papers in this collection include the following: D. Ghose and U. R. Prasad, 

Determination of rational strategies for players in two-target games (1--11); E. A. Galperin, 

The cubic algorithm for global games with application to pursuit-evasion games  (13-31); M. 
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Guelman, Control strategies in a planar pursuit evasion game with energy constraints (33--41); 

T. Miloh, M. Pachter and A. Segal, The effect of a finite roll rate on the miss-distance of a 

bank-to-turn missile   (43-54); V. S.   Zheleznov, M. N. Ivanov, E. A. Kurskii and E. P. 

Maslov, Avoidance of detection in 3-D  (55-66); M. N. Ivanov and E. P. Maslov, A problem 

of avoidance of a rotating segment (67-75); D. A. Klementiev, The 3-D detection problem of I 

an evader moving in a fixed plane (77—85); Y. Yavin, Applications of stochastic differential j 

games to the suboptimal design of pulse motors  (87-95); A. Garcia-Ortiz, J. Wootton, E. Y. 
£ 

Rodin et al., Application of semantic control to a class of pursuer-evader problems (97-124); \ 

F. Imado and T. Ishihara, Pursuit-evasion geometry analysis between two missiles and an air- 
f 

craft  (125-139); E. Airman [Eitan Meir Airman] and G. Koole, Stochastic scheduling games t 

with Markov decision arrival processes (141-148). i 

Title: Nonlinear Regulation and Nonlinear H„ Control Via the State-Dependent Riccati Equa- 

tion Technique. 

Authors: James R. Cloutier, Cristopher N. D'Souza, and Curtis Mracek 

Submitted for Publication:, July 1995 

Abstract: A new technique for systematically designing nonlinear regulators is introduced. 

The method consists of first using direct parameterization to bring the nonlinear plant to a 

linear structure having state-dependent coefficients (SDC). A state-dependent Riccati equation 

(SDRE) is then solved at each point x along the trajectory to obtain a nonlinear feedback con- 

troller of the form u = -R_1(x)g(x)TP(x)x, where P(x) is the solution of the SDRE. In the 

case of scalar x, it is shown that the SDRE approach yields the optimal solution of the non- 

linear regulator. In the multivariable case, it is shown that for any SDC parameterization that 

is strongly controllable and strongly observable, the SDRE method produces a closed loop 
£ 

solution that is globally asymptotically stable provided that the state and control weighting | 

c 
i 
i 

matrices are chosen properly.   It is shown that, if it exists, the parameter-dependent SDC .■ 

parameterization can be computed such that the multivariable SDRE closed loop solution is *- 

optimal.   Additionally, for the case of parameter variations, the robustness of the method is | 
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characterized. A general nonlinear minimum-energy (nonlinear H„) problem is then posed. 

For this problem, the SDRE method involves the solution of two coupled SD Riccati equa- 

tions at each point x along the trajectory. In the case of full state information, it is shown 

that the SDRE nonlinear H« controller, assuming properly chosen weighting, is internally 

stable. Examples are provided which illustrate the effectiveness of the SDRE technique. 
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/* missile.c     Draws the intercept surface of an aircraft and missile 
* August 06» 1995    Mike Elgersma 
* November 05, 1995  Include option to make 2 surface-components tangent. ;: 

* November 19, 1995  Put in acceleration constraints. 
* November 19, 1995  Replaced vector iteration with faster scalar iteration. 
* November 21, 1995  x_minus_xl_unit - [Vl_unit,Vl_perp]«[cel,sel«szl,sel»czl] 
* Algorithms from: Morton & Elgersma ECALM paper 
* OpenGL code modified from: Feb. 1995 MS Journal  pp 19-40 
« */ 

#include <stdio.h> 
#include <stdlib.h> \~ 
^include <math.h> ' 
#include <windows.h> *' 
#include <GL/gl.h> 
^include <GL/glu.h> f~ 

f:'- 
#define pi 3.1416f/* slightly bigger than pi, so surface has a little overlap.  •/ X 
/* Typically choose num_eta-30 and num_zeta-60 since zeta has twice the range, 

but for checking the point where two surface components meet, the surface gets / 
stretched in the eta direction, near eta-0, so use more eta points; -  -v- */ f 

tfdefine num_eta   30 /• The number of points on 0 < eta <  pi on 2-sphere «/ V; 
#define num_zeta  60 /* The number of points on 0 < zeta < 2«pi on 2-sphere »/ 
#define num_iter   4 /« number of iterations to find radius on warped 2-sphere */ 

void initialize_state(float xyzl_0[3].float xyz2_0[3],float Vl_0[3],float V2_0[3], j;; 

float dx0[3], float Vl[3],float V2[3]); 
float cone2(float Vl[3], float V2[3]); ,- 
void intercept2(float xyzl_0[3], float Vl_0[3], float xyz2_0[3], float V2_0[3], |- 

float »rl_error, float T2_e_z[num_zeta+1][num_eta+l], tj 
float x_s[num_zeta+l][num_eta+l], float y_s[num_zeta+l][num_eta+l], 
float z_s[num_zeta+l][num_eta+l], float xyz_T2_max[3], 
float accel_l[num_zeta+l][num_eta+l], £T 
float accel_2[num_zeta+l][num_eta+l]); I 

void cross_prod(float cross[3], float vecl[3], float vec2[3]); X 

LONG WINAPI WndProc (HWND. UINT, WPARAM, LPARAM); f 
void SetDCPixelFormat (HDC); | 
void InitializeRC (void); *• 
void DrawSurface(float x_s[num_zeta+l][num_eta+l], float y_s[num_zeta+l][num_eta+l], 

float z_s[num_zeta+l][num_eta+l], float T2_e_z[num_zeta+1][num_eta+l], c. 
float accel_l[num_zeta+l][num_eta+l], float accel2[num_zeta+l][num_eta+l], | 
float accel_l_limit, float accel_2_limit); |^ 

//void DrawScene (HDC hdc,  float vert_angle, float horz_angle); 
void DrawScene (HDC hdc); 

HPALETTE hPalette - NULL; & 

//const int textcolor[16] - {C0L0R_WIND0WTEXT}; // used by SetSysColor to get black text 
//const int  bkcolor[l&] - {C0L0R_WIND0W};     // used by SetSysColor to get white background £ 
//const COLORREF blackcolor[3] - {RGB(0,0,0)};   //used by SetSysColor to get black text \?' 
//const COLORREF whitecolor[3]-{RGB(255,255,255)};// used by SetSysColor to get white background l- 

float x_s[num_zeta+l][num_eta+l]; // x coord of point on intercept surface \ 
float y_s[num_zeta+l][num_eta+l]; // y coord of point on intercept surface y 
float z_s[num_zeta+l] [num_eta+l]; // z coord of point on intercept surface '<■■ 
float T2_e_z[num_zeta+1][num_eta+l]; 
float accel_l[num_zeta+l][num_eta+l], accel_2[num_zeta+l][num_eta+l];// accel of veh 1 and 2 { 
float accel_l_limit, accel_2_limit; f' 
float xyz_T2_max[3]; /* location on surface with max intercept time */ £ 
float rl_error - O.lf;/* max error in computed dist from aircraft to surface »/ 
float eta2_kl; 

/« The following temporary variables are used to update the state variables »/ \ 
float Time - O.Of, dT - .5f; 
float centerl[3], vl_0; 
float center2[3], v2_0; f" 
float crossl[3], dist_sql, radiusl, Wl[3],wl, rad_vecl[3],rad_vecl_[3], csl,ssl; £ 
float cross2[3], dist_sq2, radius2, W2[3],w2, rad_vec2[3],rad_vec2_[3], cs2,ss2; 

/* The following "state" variables get updated when time advances »/ | 
//  j- 
// - 
/« 1 



//This data is planar and gives a surface that just touches the cone 
float xyzl_0[3] - { O.OOOf, O.OOOf, O.OOOf};  // position of aircraft 

{-4.603f ,-8.876f, 2.954f};  // position of missile 
{-4.603f«1.4f,-8.876f*1.4f, 2 .954f*l .4f}; // position of roissile(scale) 

-.593f,  .139f}; // velocity of aircraft 
2.961f, -.761f}; // V2 >> VI  to allow intercept 

{-2.f, -4.f, 1.5f}; //  center between xyzl_0 and xyz2_0 INITIAL 

-50.Of; //  degrees 
210.Of; // degrees 

rotate view about vertical axis 
rotate view about horizontal axis 

//float xyz2_0[3] 
float  xyz2_0[3] 
float Vl_0[3] - { 1.234f, 
float V2_0[3] - {-4.199f 
float mid_point[3] 
// 
float vert_angle - 
float horz_angle - 
// limits 
float accel_l_limit - 1.4f; // 2*Vl*Vl/|rl-r2| 
float accel_2_limit - 4.Of; // 2*V2*V2/|rl-r2| 
float d_accel » .If;     // changes in accel limits when F7 and F8 key used 
»/ 
// 
//  
// This data in the Ecalm Final Report, December 1995 
float xyzl_0[3] - { O.Of, O.Of, O.Of}; // position of aircraft 
float xyz2_0[3] - { 6.Of,-5.Of, 4.Of}; // position of missile 

{ -.3f, -.If, -.If}; // velocity of aircraft 
{ -.2f,  .Of,  -.6f}; // V2 >> VI  to allow intercept 

- {3.f, -2.5f, 2.f}; // center between xyzl_0 and xyz2_0 INITIAL 

float Vl_0[3] 
float V2_0[3] 
float mid_point[3] 
// 
float vert_angle 
float horz_angle 

-20.Of; // degrees 
20.Of; // degrees 

rotate view about vertical axis 
rotate view about horizontal axis 

// limits 
float accel_l_limit - .If; // 2«Vl»Vl/|rl-r2| 
float accel_2_limit - .15f; // 2*V2«V2/|rl-r2| 
float d_accel - .02f;     // changes in accel limits when F7 and F8 key used 
// _ ^  
/» 
// This data gies an accel2_limit region with a hole in it 
float xyzl_0[3] - { O.Of, O.Of, O.Of}; // position of aircraft 
float xyz2_0[3] - { 6.0f«2.0f,-5.0f»2.0f, 4.0f«2.0f}; //    position of missile 
float Vl_0[3] - { -.30f,  .25f, -.20f}; //   velocity of aircraft 
float V2_0[3] - { -.66f,  .51f,  -.44f}; //  V2 >> VI  to allow intercept 
float mid_point[3] ■ {3.f, -2.5f, 2.f}; // center between xyzl_0 and xyz2_0 INITIAL 
// 
float vert_angle 
float horz_angle 
//  limits 
float accel_l_limit - 0.220f/2.0f; //  2*Vl«Vl/|rl-r2| 
float accel_2_limit - 0.053f/2.0f; *// 2«V2«V2/|rl-r2| 
float d_accel - .002f;     // changes in accel limits when F7 and F8 key used 
»/ 
//  
/* 
//  This data needs more grid points or more iterations to converge, 120x120 grid, 4 iterations 
//  NONplanar (almost 3 orthog vectors) and gives a surface that just touches the cone 

-20.Of; //  degrees 
-30.Of; // degrees 

rotate view about vertical axis 
rotate view about horizontal axis 

float xyzl_0[3] - { O.Of, 0 
//float xyz2_0[3] - { 0.2f, 
float xyz2_0[3] - { 0.4f, 
//float Vl_0[3] - { 2.294f, 
float Vl_0[3] - { 2.290f, 
float V2_0[3] - { .20f,  4. 

Of, O.Of}; // position of aircraft 
6.Of,-4.Of}; // position of missile 
12.Of,-8.Of}; // position of missile (x2-xl stretches everthing) 
.20f, .20f}; // velocity of aircraft 
.20f, .20f}; // velocity of aircraft 

OOf, 6.00f}; // V2 >> VI  to allow intercept 
float mid_point[3] 
// 
float vert_angle - - 60.Of 

{O.f, 3.f. -2.f}; // center between xyzl_0 and xyz2_0 INITIAL 

// degrees 
float horz_angle - 
// limits 
float accel_l_limit 
float accel_2_limit 
float d_accel - .If 
»/ 
//  

120.Of; // degrees 
rotate view about vertical axis 
rotate view about horizontal axis 

3.Of; // 2*Vl«Vl/|rl-r2| 
8.Of; // 2*V2«V2/|rl-r2| 

// changes in accel limits when F7 and F8 key used 

int  big_cone - 0; // initialize with no cone drawn (Home key turns on cone etc. 
int sign - 1; // "END" key changes this to -1 to flip sign on keyboard entry. 

float dx0[3]; //initial offset 
float Vl[3]; // initial velocity of aircraft 
float V2[3]; // initial velocity of missile    2 



// For changing VI so solution components just touch. 
float V2_unit[3], V2_per[3],d_r_unit[3], d_r[3], tmp[3], Vl_dir[3], Vl_unit[3]; i 
float v2. los» vl_over_v2, eta2c, r2, V2_dot_r, Vl_dir_norm, delta_r, cos_eta2c, sin_eta2c; 

float dlos. cos_dlos, sin_dlos; // to change los. by changing V2_0 
float drl_kiss, rl_kiss[3]; // to plot the (ellipsoid, cone) kiss point ; 
//  : 
/* 
» Function WinMain. 
«/ 

int WINAPI WinMain (HINSTANCE hlnstance, HINSTANCE hPrevInstance, t- 
LPSTR IpszCmdLine, int nCmdShow) 

{ 

static char szAppName[]- 
"Intercept Surface: aircraft at 'apple stem', black ball at max-time intercept"; 

WNDCLASS wc; 
HWND hwnd; } 
MSG msg; T 

wc.style - CS_HREDRAW | CS_VREDRAW;  // Horizontal or Vertical redraw? 
wc.lpfnWndProc - (WNDPROC) WndProc; f 
wc.cbClsExtra « 0; /", 
wc.cbWndExtra »0; * 
wc.hlnstance - hlnstnnce; 
wc.hlcon - Loadlcon (NULL, IDI_APPLICATION); f 
wc.hCursor - LoadCursor(NULL, IDC_ARR0W); j 
wc.hbrBackground - (HBRUSH) (C0L0R_WIND0W    +1);  // overwritten by glClearColor later       fc. 
//wc.hbrBackground - (WHITE_BRUSH);  // overwritten by glClearColor later 
//wc.hbrText      - (HBRUSH) (C0L0R_WIND0WTEXT +1);    // Try to make black text ERROR       f 
wc.lpszMenuName - NULL; i 
wc.lpszClassName - szAppName; :■-. 

RegisterClass (&wc); f. 
r 

//hwnd - CreateWindow (szAppName, szAppName, [ 
// WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN | WS_CLIPSIBLINGS, 
// CWJJSEDEFAULT, CWJJSEDEFAULT, CWJJSEDEFAULT» CW_USEDEFAULT. //random 
// HWND_DESKTOP, NULL, hlnstance, NULL); I 
hwnd - CreateWindow (szAppName, szAppName, 

WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN | WS_CLIPSIBLINGS, 
0,0,800,600, // u-pper_left_corner_xy and lower_right_corner_xy 
HWND_DESKTOP, NULL, hlnstance, NULL); 

ShowWindow (hwnd, nCmdShow); 
UpdateWindow (hwnd); 

initialize_state(xyzl_0,xyz2_0,Vl_0,V2_0, dxO.Vl.V2); //aircraft and missile 

//SetSysColors(l, bkcolor, whitecolor); // white background 
//SetSysColors(l. textcolor, blackcolor); // black text 

while (GetMessage (&msg, NULL, 0, 0)) { 
TranslateMessage (&msg); 
DispatchMessage (&msg); 

} 
return msg.wParam; 

} 

/« 
* WndProc processes messages to the main window. 
«/ 

LONG WINAPI WndProc (HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) 
{ 

static HDC hdc; 
static HGLRC hrc; 
PAINTSTRUCT ps; 
GLdouble gldAspect; 
GLsizei glnWidth, glnHeight; 
static BOOL bUp = TRUE; 3 

«:- 

ä 
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static UINT nTimer; 
int n; 

//SetBkColor( hdc, GetSysColor (C0L0R_WIND0W) ); // see p 223 
//SetTextColor(hdc, GetSysColor (COLOR_WINDOWTEXT) ); // see p 223 

switch (msg) { 

case WM_KEYDOWN: 
switch (wParam) 

{ 
/* Rotate the view */ 
case VK_LEFT: 
vert_angle -- 10.Of; 
return 0; 

case VK_RIGHT: 
vert_angle +- 10.Of; 

case VK_UP: 
horz_angle -- 10.Of; 
return 0; 

case VK_D0WN: 
horz_angle +- 10.Of; 
return 0; 

case VK_END: 
sign - -sign; // Changes sign on other keyboard entries 
return 0; 

/* Change Vl_ to make the two solution components just touch */ 
case VK_H0ME: 
if ( big_cone -=■ 2) 
big_cone - 0; 

else 
{ 
big_cone - 2; 
v2 - (float) sqrt(V2[0]»V2[0]+V2[l]«V2[l]+V2[2]*V2[2]); 
V2_dot_r - V2_0[0]«(xyzl_0[0]-xyz2_0[0]) + 

V2_0[l]»(xyzl_0[l]-xyz2_0[l]) + 
V2_0[2]»(xyzl_0[2]-xyz2_0[2]); 

delta_r - (float) sqrt((xyz2_0[0]-xyzl_0[0])*(xyz2_0[0]-xyzl_0[0]) + 
(xyz2_0[l]-xyzl_0[l])*(xyz2_0[l]-xyzl_0[lj) + 
(xyz2_0[2]-xyzl_0[2])*(xyz2_0[2]-xyzl_0[2]) ); 

los - (float) acos(V2_dot_r/(v2»delta_r)); 

vl_over_v2 - .724f*(1.03f - (float)sin(los/2.0f));// solution components just merge 
vl_over_v2 - .724f*( .99f - (float)sin(los/2.0f));// solution components just separate 
vl_over_v2 = .724f*(1.01f - (float)sin(los/2.0f));// solution components about kiss 
eta2c ■= (3.14159f - (float) asin(vl_over_v2) + los)/2.0f; //  use to draw cone 

// iterate to get better than 2'/.  accuracy on max vl/v2 that gives separate sol comp 
vl_over_v2 - (float) ( (sin(eta2c)/eta2c) / 

sqrt( 1 + (l/eta2c - l/tan(eta2c))«(l/eta2c - l/tan(eta2c)) )  ); 
eta2c - (3.14159f - (float) asin(vl_over_v2) + los)/2.0f; 
vl_over_v2 - (float) ( (sin(eta2c)/eta2c) / 

sqrt( 1 + (l/eta2c - 1/tan(eta2c))«(l/eta2c - 1/tan(eta2c)) )  ); 
eta2c - (3.14159f - (float) asin(vl_over_v2) + los)/2.0f; // use to draw cone 

d_r[0] - (xyz2_0[0]-xyzl_0[0]); 
d_r[l] - (xyz2_0[l]-xyzl_0[l]); 
d_r[2] - (xyz2_0[2]-xyzl_0[2]); 
cross_prod(tmp, d_r, V2_0); 
cross_prod(Vl_dir, d_r, tmp);// VI perp to d_r, in plane of d_r and V2_ 

Vl_dir_norm-(float)sqrt(Vl_dir[0]«Vl_dir[0]+Vl_dir[l]*Vl_dir[l]+Vl_dir[2]»Vl_dir[2]); 

Vl_unit[0] - Vl_dir[0]/Vl_dir_norm; 
Vl_unit[l] - Vl_dir[l]/Vl_dir_norm; 
Vl_unit[2] - Vl_dir[2]/Vl_dir_norm; 

drl_kiss - delta_r * (float) tan(eta2c - los); 
rl_kiss[0] - drl_kiss»Vl_unit[0]; 
rl_kiss[l] = drl_kiss*Vl_unit[l];  4 



rl_kiss[2] - drl_kiss«Vl_unit[2]; // use to plot the (ellipsoid, cone) kiss point 

V1_0[0] - vl_over_v2»v2«Vl_unit[0]; 
V1_0[1] - vl_over_v2-v2»Vl_unit[l]; 
Vl_0[2] = vl_over_v2*v2*Vl_unit[2]; 

Time - O.Of;    // Restart time (then reset the initial condition) 
VI[0] » V1_0[0]; // Transfer the current state to the new initial condition 
Vl[l] = V1_0[1]; 
Vl[2] = Vl_0[2]; 
V2[0] -■V2_0[0]; 
V2[l] - V2_0[l]; 
V2[2] - V2_0[2]; 
dx0[0] = xyz2_0[0] - xyzl_0[0]; 
dx0[l] = xyz2_0[l] - xyzl_0[l]; 
dx0[2] - xyz2_0[2] - xyzl_0[2]; 
eta2_kl - cone2(Vl,V2); 
} 
return 0; 

/* change the velocity of the missile »/ ■■ 
case VK_F3: 

V1_0[0] += sign * .If; // increment one element of the current state 
Time -= O.Of;    //  Restart time (then reset the initial condition) 
VI[0] - V1_0[0]; // Transfer the current state to the new initial condition 
Vl[l] - V1_0[1]; 
Vl[2] - Vl_0[2]; 
V2[0] = V2_0[0]; ! 
V2[l] - V2_0[l]; 
V2[2] - V2_0[2]; 
dx0[0] - xyz2_0[0] - xyzl_0[0]; 
dx0[l] - xyz2_0[l] - xyzl_0[l]; 
dx0[2] - xyz2_0[2] - xyzl_0[2]; / 
eta2_kl - cone2(Vl,V2); 
return 0; 

case VK_F4: 
V1_0[1] +- sign * .If; 
Time = O.Of; 
V1[0] - V1_0[0]; 
Vl[l] - V1_0[1]; 
Vl[2] - Vl_0[2]; 
V2[0] - V2_0[0]; | 
V2[l] = V2_0[l]; 
V2[2] - V2_0[2]; 
dx0[0] - xyz2_0[0] - xyzl_0[0]; | 
dx0[l] - xyz2_0[l] - xyzl_0[l]; i 
dx0[2] - xyz2_0[2] - xyzl_0[2]; ' f 

eta2_kl = cone2(Vl.V2); 
return 0; f 

case VK_F5: ' 
Vl_0[2] +- sign » .If; 
Time - O.Of; 
V1[0] = V1_0[0]; 
Vl[l] - V1_0[1]; 
Vl[2] - Vl_0[2]; 
V2[0] - V2_0[0]; 
V2[l] - V2_0[l]; 
V2[2] - V2_0[2]; 
dx0[0] - xyz2_0[0] - xyzl_0[0]; 
dx0[l]   - xyz2_0[l]   - xyzl_0[l]; 
dx0[2]   - xyz2_0[2]   - xyzl_0[2]; 
eta2_kl - cone2(Vl,V2); 
return 0; i 

case VK_F6:  // change line-of-sight angle from missile to aircraft 

// compute OLD los angle 
v2 - (float) sqrt(V2[0]»V2[0]+V2[l]«V2[l]+V2[2]»V2[2]); 

v2 - (float) sqrt(V2[0]«V2[0]+V2[l]»V2[l]+V2[2]»V2[2]); X 
V2_dot_r - V2_0[0]«(xyzl_0[0]-xyz2_0[0]) + 

V2_0[l]*(xyzl_0[l]-xyz2_0[l]) + 
V2_0[2]«(xyzl_0[2]-xyz2_05 2]); 



delta_r - (float) sqrt((xyz2_0[0]-xyzl_0[0])*(xyz2_0[0]-xyzl_G[0]) + 
(xyz2_0[l]-xyzl_0[l])»(xyz2_0[l]-xyzl_0[l]) + 
(xyz2_0[2]-xyzl_0[2])*(xyz2_0[2]-xyzl_0[2]) ); 

los - (float) acos(V2_dot_r/(v2*delta_r)); 

// Compute unit vector perp to V2, in plane of V2 and (r2-rl) 
V2_unit[0] - V2_0[0]/v2; 
V2_unit[l] = V2_0[l]/v2; 
V2_unit[2] - V2_0[2]/v2; 
d_r_unit[0] - (xyzl_0[0]-xyz2_0[0])/delta_r; 
d_r_unit[l] - (xyzl_0[l]-xyz2_0[1])/delta_r; 
d_r_unit[2] - (xyzl_0[2]-xyz2_0[2])/delta_r; 
V2_per[0] = (d_r_unit[0] - (floatjcos(los)*V2_unit[0]) / (float)sin(los). 
V2_per[l] - (d_r_unit[l] - (float)cos(los)«V2_unit[1]) /  (float)sin(los). 
V2_per[2] - (d_r_unit[2] - (float)cos(los)»V2_unit[2]) /  (float)sin(los). 

dlos - sign * .01f; // los changed by the F6 key 
los +- dlos; 

// Rotate V2 by the increment in the los angle 
cos_dlos - (float) cos(dlos); 
sin_dlos - (float) sin(dlos); 
V2_0[0] - V2_0[0]*cos_dlos - v2*V2_per[0]»sin_dlos; 
V2_0[l] - V2_0[l]«cos_dlos - v2»V2_per[l]»sin_dlos; 
V2_0[2] - V2_0[2]«cos_dlos - v2«V2_per[2]«sin_dlos; 

Time - O.Of; 
V1[0] - V1_0[0]; 
Vl[l] - V1_0[1]; 
Vl[2] - Vl_0[2]; 
V2[0] - V2_0[0]; 
V2[l] - V2_0[l]; 
V2[2] - V2_0[2]; 
dx0[0] - xyz2_0[0] - xyzl_0[0]; 
dx0[l] - xyz2_0[l] - xyzl_0[l]; 
dx0[2] - xyz2_0[2] - xyzl_0[2]; 
eta2_kl - cone2(Vl,V2); 
return 0; 

case VK_F7: /» change aircraft acceleration limits */ 
accel_l_limit - accel_l_limit + sign*d_accel; 
return 0; 

case VK_F8: /« change missile acceleration limits */ 
accel_2_limit - accel_2_limit + sign*d_accel; 
return 0; 

/» update the state */ 
case VK_F1: /* missile and aircraft each on arcs to xyz_T2_max */ 
Time +» dT; 
// aircraft  // 
vl_0 -(float) sqrt(Vl_0[0]«Vl_0[0]+Vl_0[l]»Vl_0[l]+Vl_0[2]«Vl_0[2]); 
crossl[0] - Vl_0[l]«(xyz_T2_max[2] - xyzl_0[2]) - 

Vl_0[2]«(xyz_T2_max[l] - xyzl_0[l]); 
cross1[1] = Vl_0[2]»(xyz_T2_max[0] - xyzl_0[0]) - 

Vl_0[0]*(xyz_T2_max[2] - xyzl_D[2]); 
crossl[2] - Vl_0[0]«(xyz_T2_max[l] - xyzl_0[l]) - 

Vl_0[l]*(xyz_T2_max[0] - xyzl_0[0]); 
dist_sql - (xyz_T2_max[0] - xyzl_0[0])»(xyz_T2_max[0] - xyzl_0[0]) + 

(xyz_T2_max[l] - xyzl_0[l])*(xyz_T2_max[l] - xyzl_0[l]) + 
(xyz_T2_max[2] - xyzl_0[2])»(xyz_T2_max[2] - xyzl_0[2]); 

radiusl - .5f«vl_0*dist_sql/   (float) 
sqrt(cross 1[0]»cross 1[0]+cross1[1]»cross 1[1]+cross1[2]»cross1[2]); 

W1[0] - Vl_0[l]*crossl[2] - Vl_0[2]»crossl[l]. 
Wl[l] - Vl_0[2]*crossl[0] - Vl_0[0]«crossl[2] 
Wl[2] - Vl_0[0]»crossl[l] " Vl_0[l]«crossl[0] 
wl - (float) sqrt(Wl[0]»Wl[0] +W1[1]»W1[1] + W1[2]»W1[2]); 
rad_vecl[0] - radiusl»Wl[0]/wl; 
rad_vecl[l] - radiusl«Wl[l]/wl; 
rad_vecl[2] - radiusl»Wl[2]/wl; 
rad_vecl_[0] - radiusl«Vl_0[0]/vl_D; 
rad_vecl_[l] - radiusl«Vl_0[l]/vl_0; 
rad_vecl_[2] - radiusl»Vl_0[2]/vl_0;6 



csl - (float 
ssl - (float 
center![0] = 
center1[1] 
centerl[2] 
xyzl_0[0] 
xyzl_0[l] 
xyzl_0[2] 
V1_0[0] - 
V1_0[1] - 
Vl_0[2] - 
// missile -- 
v2_0 -(float) 

cos(vl_0»dT/radiusl); 
sin(vl_0»dT/radiusl); 

rad_vec1 xyzl_0[0] 
xyzl_0[l] 
xyzl_0[2] 

- centerlfO] 
- centerl[l] 
-= centerl[2] 
(vl_0/radiusl)»( 
(vl_0/radiusl)»( 
(vl_0/radiusl)»( 

+ 
+ 

rad. 
rad. 
rad. 
rad. 
rad. 
-rad. 
-rad. 
-rad 

vecl 
vecl 
vecl 
vecl 
.vecl 
vecl 
vecl 
vecl 

0]; //  center of circle 
l]i 
2]: 
0]*csl 
l]-csl 
2]«csl 
0]*ssl 
l]-ssl 
2]«ssl 

[0]«ssl; 
[l]«ssl; 
[2]»ssl; 
[0]»csl); 
[l]«csl); 
[2]«csl); 
 // 

sqrt(V2_0[0]«V2_0[0]+V2_0[1]»V2_0[1]+V2_0[2]«V2_0[2]); 

rad_vec1_ 
rad_vecl_ 
rad_vec1_ 
rad_vecl_ 
rad_vec1_ 
rad_vec1_ 

cross2[0] - V2_0[l]»(xy2_T2_max[2] - xyz2_0[2]) - 
V2_0[2]»(xyz_T2_max[l] - xyz2_0[l]); 

cross2[l] - V2_0[2]»(xyz_T2_max[0] - xyz2_0[0]) - 
V2_0[0]*(xyz_T2_max[2] - xyz2_0[2]); 

cross2[2] - V2_0[0]*(xyz_T2_max[l] - xyz2_0[l]) - 
V2_0[l]»(xyz_T2_max[0] - xyz2_0[0]); 

dist_sq2 (xyz-T2-max{0] —xyz2_€[0] >«^xyzr.T2-max[0] 
(xyz_T2_max[l] - xyz2_0[l])»(xyz_T2_max[l] 
(xyz_T2_max[2] - xyz2_0[2])»(xyz_T2_max[2] 

radius2 = .5f«v2_0«dist_sq2/   (float) 
sqrt(cross2[0]»cross2[0]+cross2[l]«cross2[l]+cross2[2]*cross2[2]); 

W2[0] - V2_0[l]»cross2[2] - V2_0[2]*cross2[l]; 
W2[l] - V2_0[2]»cross2[0] - V2_0[0]«cross2[2]; 
W2[2] - V2_0[0]«cross2[l] - V2_0[l]*cross2[0]; 
w2 = (float) sqrt(W2[0]*W2[0] + W2[1]»W2[1] + W2[2]*W2 
rad_vec2[0] - radius2*W2[0]/w2; 
rad_vec2[l] - radius2»W2[l]/w2; 
rad_vec2[2] - radius2«W2[2]/w2; 
rad_vec2^[0] - radius2*V2_0[0]/v2_0; 
rad_vec2_[l] - radius2*V2_0[l]/v2_0; 
rad_vec2_[2] - radius2*V2_0[2]/v2_0; 
cs2 - (float) cos(v2_0»dT/radius2); 
ss2 - (float) sin(v2_0»dT/radius2); 

- xyz2_0[0]) + 
- xyz2_0[l]) + 
- xyz2_0[2]); 

![2]); 

center2[0] - xyz2_0[0] 
center2[l] - xyz2_0[l] 
center2[2] - xyz2_0[2] 
xyz2_0[0] - center2[0] 

center2[l] 
center2[2] 

xyz2_0[l] 
xyz2_0[2] 
V2_0[0] = 
V2_0[l] - 
V2_0[2] - 
return 0; 

(v2_0/radius2)*(-rad_vec2[0]*ss2 
(v2_0/radius2)*(-rad_vec2[l]*ss2 
(v2_0/radius2)•(-rad_vec2[2]»ss2 

rad_vec2[0]; //  center of circle 
rad_vec2[l]; 
rad_vec2[2]; 
rad_vec2[0]«cs2 
rad_vec2[l]«cs2 
rad_vec2[2]«cs2 

rad_vec2_ 
rad_vec2_ 
rad_vec2_ 
rad_vec2_ 
rad_vec2_ 
rad vec2 

[0]*ss2; 
[l]»ss2; 
[2]«ss2; 
[0]»cs2); 
[l]«cs2); 
[2]»cs2); 

case VK_F2: /« missile on arc to xyz_T2_max, aircraft flies straight «/ 
Time +- dT; 
ss  aircraft  ■-■--— —:' ' - // 
xyzl_0[0] +-■ dT«Vl_0[0];   
xyzl_0[l] +- dT»Vl_0[l]; 
xyzl_0[2] +- dT«Vl_0[2]; 
//  missile  // 
v2_0 -(float) sqrt(V2_0[0]*V2_0[0]+V2_0[l]»V2_0[l]+V2_0[2]»V2_0[2]); 
cross2[0] - V2_0[l]»(xyz_T2_max[2] - xyz2_0[2]) - 

V2_0[2]*(xyz_T2_max[l] -xyz2_0[l]); 
cross2[l] - V2_0[2]*(xyz_T2_max[0] - xyz2_0[0]) - 

V2_0[0]«(xyz_T2_max[2] - xyz2_0[2]); 
cross2[2] > V2_0[0]*(xyz_T2_max[l] - xyz2_0[l]) - 

V2_0[l]*(xyz_T2_max[0] - xyz2_0[0]); 
dist_sq2 - (xyz_T2_max[0] - xyz2_0[0])*(xyz_T2_max[0] - xyz2_0[0]) + 

(xyz_T2_max[l] - xyz2_0[l])»(xyz_T2_max[l] - xyz2_0[l]) + 
(xyz_T2_max[2] - xyz2_0[2])»(xyz_T2_max[2] - xyz2_0[2]); 

radius2 - .5f*v2_0*dist_sq2/   (float) 
sqrt(cross2[0]«cross2[0]+cross2[l]»cross2[l]+cross2[2]*cross2[2]); 

W2[0] - V2_0[l]«cross2[2] - V2_0[2]»cross2[l] 
W2[l] - V2_0[2]»cross2[0] - V2_0[0]«cross2[2] 
W2[2] - V2_0[0]«cross2[l] - V2_0[l]«cross2[0] 
w2 - (float) sqrt(W2[0]«W2[0] +W2[1]«W2[1] + W2[2]*W2[2]); 
rad_vec2[0] - radius2*W2[0]/w2; 
rad_vec2[l] - radius2»W2[l]/w2; 
rad_vec2[2] - radius2*W2[2]/^f2;    7 



rad_vec2_[0] - radius2«V2_0[0]/v2_0; 
rad_vec2_[l] - radius2«V2_0[l]/v2_0; 
rad_vec2_[2] - radius2»V2_0[2]/v2_0; 
cs2 - (float) cos(v2_0*dT/radius2); 
ss2 = (float) sin(v2_0*dT/radius2); 
center2[0] - xyz2_0[0] -  rad_vec2[0]; //  center of circle 
center2[l] - xyz2_0[l] -  rad_vec2[l]; 
center2[2] = xyz2_0[2] -  rad_vec2[2]; 
xyz2_0[0] - center2[0] +  rad_vec2[0]«cs2 + rad_vec2_[0]»ss2; 
xyz2_0[l] - center2[l] +  rad_vec2[l]«cs2 + rad_vec2_[l]»ss2; 
xyz2_0[2] - center2[2] +  rad_vec2[2]*cs2 + rad_vec2_[2]«ss2; 
V2_0[0] - (v2_0/radius2)«(-rad_vec2[0]«ss2 + rad_vec2_[0]»cs2); 
V2_0[l] = (v2_0/radius2)»(-rad_vec2[l]»ss2 + rad_vec2_[l]»cs2); 
V2_0[2] - (v2_0/radius2)*(-rad_vec2[2]»ss2 + rad_vec2_[2]»cs2); 
return 0; 

} 
return 0; 

case WM_CREATE: 
// 
//  Create a rendering context and set a timer. 
// 
hdc - GetDC (hwnd); 
SetDCPixelFormat (hdc); 
hrc - wglCreateContext (hdc); 
wglMakeCurrent (hdc, hrc); 
InitializeRC (); 
nTimer - SetTimer (hwnd, 1, 50, NULL);   //  milliseconds 
return 0; 

case WM_SIZE: 
// 
// Redefine the viewing volume and viewport once the program 
//  starts and again any time the window size changes. 
// 
glnWidth - (GLsizei) LOWORD (lParam); 
glnHeight - (GLsizei) HIWORD (lParam); 
gldAspect - (GLdouble) glnWidth / (GLdouble) glnHeight; 

glMatrixMode (GL_PR0JECTI0N); 
glLoadldentity (); 
gluPerspective (30.0, gldAspect, 0.48, 48.0); 
glViewport (0, 0, glnWidth, glnHeight); 
return 0; 

case WM_PAINT: 
// 
// Draw the scene. 
// 
BeginPaint (hwnd, &ps); 
//DrawScene (hdc, vert_angle, horz_angle); 
DrawScene (hdc); 
EndPaint (hwnd, &ps); 
return 0; 

case WMJTIMER: 
// 
//    force a repaint. 
// 
InvalidateRect (hwnd, NULL, FALSE); 
return 0; 

case WM_QUERYNEWPALETTE: 
// 
// If the program is using a color palette, realize the pallette 
// and update the client area when the window receives the input 
/s  focus. 
// 
if (hPalette !- NULL) { 

if (n - RealizePalette (hdc)) 
InvalidateRect (hwnd, NULL, FALSE); 

return n; 
} 8 



break; 

{ 

case WM_PALETTECHANGED: 
// 
//  If the program is using a color palette, realize the palette 
// and update the colors in the client area when another program 
// realizes its palette. 
// 
if ((hPalette !- NULL) && ((HWND) wParam !- hwnd) 

if (RealizePalette (hdc)) 
UpdateColors (hdc); 

return 0; 
} 
break; 

case WM_DESTR0Y: 
// 
//  Clean up and terminate. 
// 
wglMakeCurrent (NULL, NULL);;-       ._   : 
wglDeleteContext (hrc); 
ReleaseDC (hwnd. hdc); 
if (hPalette != NULL) 

DeleteObject (hPalette); 
KillTimer (hwnd, nTimer); 
PostQuitMessage (0); 
return 0; 

} 
return DefWindowProc (hwnd, msg, wParam, lParam); 

* SetDCPixelFormat sets the pixel format for a device context in 
• preparation for creating a rendering context. 
* 
* Input parameters: 
• hdc - Device context handle 
* 
• Returns: 
* Nothing 

void SetDCPixelFormat (HDC hdc) 
{ 

HANDLE hHeap; 
int nColors, i; 
LPLOGPALETTE IpPalette; 
BYTE byRedMask, byGreenMask, byBlueMask; 

static PIXELFORMATDESCRIPTOR pfd - 
sizeof (PIXELFORMATDESCRIPTOR), 
1. 
PFD_DRAW_T0_WINDOW | 
PFD_SUPPORT_OPENGL | 
PFD_DOUBLEBUFFER, 
PFD_TYPE_RGBA, 
24, 

0, 0, 0, 0, 

{ 

0, 0, 0. 

}; 

0, 0, 
0, 0, 
0, 0, 
32, 
0, 
0, 
PFD_MAIN_PLANEJ 
0, 
0,  0, 0 

// Size of this structure 
// Version number 
// change to PFD_DRAW_TO_BITMAP (to print) 

//  RGBA pixel values 
//  24 bit color 
// Rbits Rshift, Gbits Gshift, Bbits Bshift 
// No alpha buffer 
s/ No-accumulation buffer 
//  32-bit depth buffer 
// No stencil buffer 
// No auxiliary buffer 
// Layer type 
//  Reserved (must be 0) 
//  No layer masks 

int nPixelFormat; 

hPixelForraat - ChoosePixelFormat (hdc, &pfd); 
SetPixelFormat (hdc, nPixelFormat, &pfd); 

9 



DescnbePixelFormat (hdc, nPixelFormat, sizeof (PIXELFORMATDESCRIPTOR), &pfd); 

if (pfd.dwFlags & PFD_NEED_PALETTE) { 
nColors - 1 << pfd.cColorBits; 
hHeap = GetProcessHeap (); 

(LPLOGPALETTE) lpPalette - HeapAlloc (hHeap, 0, 
sizeof (LOGPALETTE) + (nColors « sizeof (PALETTEENTRY))); 

lpPalette->palVersion - 0x300; 
lpPalette->palNumEntries - nColors; 

byRedMask - (1 << pfd.cRedBits) - 1; 
byGreenMask - (1 << pfd.cGreenBits) - 1; 
byBlueMask - (1 << pfd.cBlueBits) - 1; 

for (i=0; i<nColors; i++) { 
lpPalette->palPalEntry[i].peRed - 

(((i >> pfd.cRedShift) & byRedMask) • 255) /  byRedMask; 
lpPalette->palPalEntry[i].peGreen - 

(((i >> pfd.cGreenShift) & byGreenMask) • 255) / byGreenMask; 
lpPalette->palPalEntry[i].peBlue - 

(((i >> pfd.cBlueShift) & byBlueMask) • 255) / byBlueMask; 
lpPalette->palPalEntry[i].peFlags - 0; 

} 

hPalette - CreatePalette (lpPalette); 
HeapFree (hHeap, 0, lpPalette); 

if (hPalette !- NULL) { 
SelectPalette (hdc, hPalette, FALSE); 
RealizePalette (hdc); 

} 
} 

} // end of SetDCPixelFormat 

/« 
* InitializeRC initializes the current rendering context 
* 
» Input parameters: 
* None 
* 
* Returns: 
* Nothing 
»/ 

void InitializeRC (void) 
{ 

GLfloat glfLightAmbient[] - { O.lf, O.lf, O.lf, l.Of }; 
GLfloat glfLightDiffuse[] - { 0.7f, 0.7f, 0.7f, l.Of }; 
GLfloat glfLightSpecularf] - { O.Of, O.Of, O.Of, l.Of }; 

// 
//  Initialize state variables. 
// 
glFrontFace (GL_CCW); 
//glCullFace (GL_BACK); //  eliminate lighting of the back side of the polygon 
//glEnable(GL_CULL_FACE); 

glDepthFunc (GL LEQUAL); 
glEnable (GL_DEPTH_TESrT); 
/» The following two lines allow missile and cone to be transparent. 

But the grphics slow down considerable, and the blendinhas a few glitches 
glEnable (GL_BLEND); // for alpha blending 
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); 
»/ 
glClearColor (l.Of, l.Of, l.Of, O.Of); // set background color to white 
//glClearColor ( .8f,  .8f,  .8f, O.Of); //  set background color to white(grey) 

// 
//  Add a light to the scene. 
// 
glLightfv   (GL_LIGHT0,  GL_AMBIENT,  glfLightAilOient); 



glLightfv (GL_LIGHTO. GL_DIFFUSE, glfLightDiffuse) ; 
glLightfv (GL_LIGHTO, GL_SPECULAR, glfLightSpecular) 
glEnable (GL_LIGHTING); 
glEnable (GL_LIGHTO); 

* DrawSurface draws a surface made of 4 cornered polygons 
» 
* Input parameters: 
* rl_e_z[num_zeta+l][num_eta+l]  an array of points defining the surface 
* rl_e_z[i-Q][j-0]     -    Coordinates of  first    corner of  i.j   polygon 
* rl_e_z[i-0][j-1] = Coordinates of second corner of i.j polygon 
« rl_e_z[i-l][j-1] - Coordinates of third corner of i,j polygon 
« rl_e_z[i-l][j-0]  - Coordinates of fourth corner of i,j polygon 

» Returns: 
* Nothing 
•/ 
void DrawSurface (float x^s-fnum-zeta+ljfnun-eta+l^-,- float y-sfnum^zeta+1][num_eta+l], 

float z_s[num_zeta+l][num_eta+l], float T2_e_z[num_zeta+1][num_eta+l], 
float accel_l[num_zeta+l][num_eta+l], float accel2[num_zeta+l][num_eta+l], 
float accel_l_limit, float accel_2_limit) 

{ 
int i.j; 
float xO.yO.zO, xl.yl.zl, x2,y2,z2, x3,y3,z3; 
GLfloat glfColor[4]; 

(j-1;  j<-num_eta;  j++) 

(i-1;   i<-num_zeta;   i++) 

for 
{ 
for 

{ 
xO - x_s[i][j]; 
yO - y_s[i][j]; 
zO - z_s[i][j]; 

xl - x_s[i] [j-1]; 
yl - y_s[i][j-l]; 
zl = z_s[i] [j-1]; 

x2 - x_s[i-l][j-l]; 
y2 - y_s[i-l][j-l]; 
z2 = z_s[i-l][j-l]; 

x3 - x_s[i-l][j]; 
y3 - y_s[i-l][j]; 
z3  - z_s[i-l][j]; 

l.Of; 
O.Of; 
O.Of; 
l.Of; 

//for(ic-0;   ic<-3 
//glfColor[0] 
glfColor[0]   - 
glfColorfl]   - 
glfColor[2]   - 
glfColor[3]   - 
if   (accel_l[i][j] 
if   (accel_2[i][j] 
if   (T2_e_z[i][j] 

{glfColor[0]   - 
glfColorfl]   - 
glfColor[2]   - 
glfColor[3]   - 

} 
glMaterialfv   (GL_ 

ic++)  glfColorfic]   - glfColorsfl][ic]; 
.4f*T2_e_z[i-l][j-l]/T2_e_z[num_zeta/2][num_eta/2];/« Red •/ 

/< 
/* 
/» 

Red 
Green 
Blue 

l_limit) glfColor[l] - l.Of; // 
.2_limit) glfColor[2] - l.Of; // 

> accel. 
> accel 

-- O.Of) 
O.Of; 
O.Of; 
O.Of; 
O.Of;// Transparent, because surface 

aircraft 
missile 

»/ 
*/ 
»/ 

accel 
accel 

limit 
limit 

point didn't converge 

FRONT, GL_AMBIENT_AND_DIFFUSE, glfColor); 

I 

glBegin (GL_P0LYGON); 
if (j < num_eta)     // so 2 vectors below are both nonzero 
// normal - (xl.yl.zl)-(xO.yO.zO) cross (x3,y3.z3)-(x0,y0.z0) 
glNormal3f((yl-y0)*(z3-z0) - (zl-z0)*(y3-y0), 

(zl-z0)*(x3-x0) - (xl-x0)»(z3-z0), 
(xl-x0)*(y3-y0) - (yl-y0)»(x3-x0) ); 

else   // (x3.y3,z3) - (xO.yO.zO) 
// normal - (xl.yl.zl)-(xO.yO.zO) cross (x2.y2,z2)-(x0.y0,z0) 
glNormal3f((yl-y0)«(z2-z0) - (zl-zO Il(y2-y0), 



(zl-zO)«(x2-xO) 
(xl-x0)»(y2-y0) 

glVertex3f(xO.yO.zO); 
glVertex3f(xl,yl,zl); 
glVertex3f(x2,y2,z2); 
glVertex3f(x3,y3,z3); 

glEnd (); 

(xl-x0)»(z2-z0), 
(yl-y0)*(x2-x0) ). 

} /» end of i loop »/ 
}  /« end of j loop •/ 
glEnable(GL_NORMALIZE); 

}     /» end of function ■ 
// To make the surface normals length 1 

/« 
« DrawScene uses OpenGL commands to draw the missile and intercept surface 
• 
» Input parameters: 
» hdc - Device context handle 
* vert_angle - vertical  viewing angle (up/down   arrow keys) 
* horz_angle - horizontal viewing angle (left/right arrow keys) 
• 
* Returns: 
* Nothing 
»/ 

//void DrawScene (HDC hdc,  float vert_angle, float horz_angle) 
void DrawScene (HDC hdc) 
{ 

int ic, buffer_length, fin_i; 
char buffer[200]; // for printing to screen 
GLUquadricObj »glquad; // for the missile cylinder 
float v2_0; // length of V2_0[] 
float ci, si, vl, v2; 
float los, dot_prod, delta_r; 
float missile_length, cone_length; 

float text_xmin - -l.Of; 
float text_xmax - l.Of; 
float text_ymin - -l.Of; 
float text_ymax - -.5f; 

// corners of black background box to put text on 

GLfloat glfBlue[] - {O.Of. O.Of, l.Of, l.Of }; 
GLfloat glfYellow[] - {l.Of, l.Of, O.Of, l.Of 
GLfloat glfColor[4]; 
GLfloat glfColors[8][4] 

}; 

{{l.Of, O.Of, O.Of, 0.5f}, 
{O.Of, l.Of, O.Of, 0.5f}, 
{O.Of. O.Of, l.Of, 0.5f}, 
{O.Of, l.Of, l.Of, 0.5f}, 
{l.Of, O.Of, l.Of, 0.5f}, 
{l.Of, l.Of, O.Of. 0.5f}, 
{l.Of, l.Of, l.Of, 0.5f}, 
{O.Of, O.Of, O.Of, 0.5f}} 

// 
// Clear the color and depth buffers. 
// 
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // black background ???? 

glMatrixMode(GL_MODELVIEW); 
glLoadldentity (); 
glTranslatef (O.Of, O.Of, -2.Of); 
// •  

// 
// Write TEXT and NUMBERS to screen 
// 

glPushMatrix(); 
glPushAttrib(GL_CURRENT_BIT);// Prevent cursor from being advanced each draw 

glfColor[0] - O.Of;glfColor[1] - O.Of;glfColor[2] - O.Of;glfColor[3] - O.Of; 
glMatenalfv (GL_FRONT, GL_AMBIENT_AND_DIFFI12i. glfColor); 



glBegin (GL_POLYGON); // black background to draw white text on 
g1Vertex3f(text_xmm, text_ymin, O.Of); 
glVertex3f(text_xmin, text_ymax, O.Of): 
glVertex3f(text_xmax, text_ymax, O.Of): 
g1Vertex3f(text_xmax, text_ymin, O.Of), 

glEnd (); 

// SetTextColor(hdc, RGB(255,0,0)); // RGB(255,255,255) -white   DOESN'T WORK ; 
// SelectObject(hdc, GetStockObject(BLACK_BRUSH));// try to make black text. DOESN'T WORK 
//SetSysColors(l, textcolor, blackcolor); // black text.  PUT OUTSIDE LOOP 
//SetBkColor(  hdc, GetSysColor (C0L0R_WINDOW) ); // see p 223 ; 
//SetTextColor(hdc, GetSysColor (C0L0R_WINDOWTEXT) ); // see p 223 f 
Select0bject(hdc, GetStockObject(SYSTEM_FONT)); 
wglUseFontBitmaps(hdc, 0, 255, 1000); //Start at 0, 255 Glyphs, offset 1000 
glListBase(1000); r 
vl = (float) sqrt(Vl[0]«Vl[0]+Vl[l]*Vl[l]+Vl[2]«Vl[2]); '" 
v2 - (float) sqrt(V2[0]«V2[0]+V2[l]«V2[l]+V2[2]»V2[2]); 
dot_prod - V2_0[0]»(xyzl_0[0]-xyz2_0[0]) + 

V2_0[l]»(xyzl_0[l]-xyz2_0[l]) + ,. 
V2_0[2]»(xyzl_0[2]-xyz2_0[2]); | 

delta_r » (float) sqrt((xyz2_0[0]-xyzl_0[0])*(xyz2_0[0]-xyzl_0[0]) + i 
(xyz2_0[l]-xyzl_0[l])«(xyz2_0[l]-xyzl_0[l]) + 
(xyz2_0[2]-xyzl_0[2])«(xyz2_0[2]-xyzl_0[2]) ); 

los - (float) acos(dot_prod/(v2«delta_r)); | 
buffer_length - sprintf(buffer, I 
"Time-*4.1f  x2(0)-xl(0)-(X4.If '/A. If '/A. If)  Vl(0) = (*4.1f '/A. If *4.1f)  V2(0)«(X4.1f %4.1f 

X4.1f) v2/vl-X4.2f >? X4.2f error-*4.2g", 
Time, dx0[0],dx0[l],dx0[2], V1[0],V1[1],V1[2], V2[0],V2[1],V2[2], v2/vl, 1.0f/(.724f*(1.01f-s 

in(los/2.0f))), rl_error); 
//glColor3f(O.Of, O.Of, O.Of);  // tried to make text black 
//glTranslatef (O.Of,12.Of, O.Of); // locate cursor     DOESN'T WORK 
glCallLists(buffer_length, GL_UNSIGNED_BYTE, buffer); r 

I. 
glPopAttrib(); 
glPopMatrix(); $■■ 
/* ./ \ 
// fc 
// Position the model relative to the viewpoint. 
// r 

glTranslatef (O.Of, O.Of, -35.Of); // move the origen away from viewer, into the screen \- 
glRotatef (horz_angle, l.Of, O.Of, O.Of); fe 
glRotatef (vert_angle, O.Of, l.Of, O.Of); 
glTranslatef (-mid_pöint[0], -mid_point[1], -mid_point[2]); // center midpoint 
// t 
// Draw the missile || 
// 
glPushMatrix(); 
glTranslatef (xyz2_0[0], xyz2_0[l], xyz2_0[2]); // location of missile f,: 
vl_0 - (float) sqrt(Vl_0[0]«Vl_0[0]+Vl_0[l]»Vl_0[l]+Vl_0[2]»Vl_0[2]);// v2/vl printed 
v2_0 - (float) sqrt(V2_0[0]«V2_0[0]+V2_0[l]«V2_0[l]+V2_0[2]»V2_0[2]); 
glRotatef( (float) (-(180/pi)*atan2(V2_0[1],V2_0[2])), l.Of, O.Of, O.Of);// -phi 
glRotatef( (float) ( (180/pi)«asin(V2_0[0]/v2_0)), O.Of, l.Of, O.Of);   // -theta 
// Now missile along z axis (tail at xyz2_0) 
missile_length » 1.5f; 
cone_length   - 15.Of; 
glTranslatef(O.Of, O.Of, -(missile_length + .6f)); // length   (so nose at xyz2_0) 
//  t. 
//fins > 
for(ic-0; ic<-3; ic++) glfColor[ic] - glfColors[l][ic]; 
glMaterialfv (GL_FR0NT, GL_AMBIENT_AND_DIFFUSE, glfColor); 
for (fin_i=0; fin_i<3; fin_i++) 
{ 

ci - (float) cos(2*pi»fin_i/3); 
si - (float) sin(2*pi*fin_i/3); 
glBegin (GL_P0LYG0N); 

glNormal3f(si, ci, O.Of); 
glVertexSf(ci*.2f, -si*.2f, .Of); 
glVertex3f(ci«.4f, -si«.4f, .Of); 
glVertex3f(ci».4f, -si».4f, .5f); 
glVertex3f(ci*.2f, -si«.2f, .7f); 

glEnd (); 
/* end of fin_i loop •/ 13 



//  
for(ic-0; ic<«3; ic++) glfColor[ic] - glfColors[4][ic]; 
glMaterialfv (GL_FR0NT, GL_AMBIENT_AND_DIFFUSE, glfColor); 
glquad - gluNewQuadric(); 
// 
gluCylinder(glquad, .2, .2, missile_length, 12,1);//B0DY: name,radl,rad2, length,nDiv,stacks 
// 
gluQuadricOrientation(glquad, GLU_INSIDE); 
gluDisk(glquad, .0, .2, 12, 1); //TAIL 

glTranslatef(O.Of, O.Of, missile_length); 
gluQuadricOrientation(glquad, GLU_OUTSIDE); 
gluCylinder(glquad, .2, .0, .6, 12, 1);  //NOSE 
glTranslatef(O.Of, O.Of, .6f); // origen is back at xyz2_0 
// 
gluDeleteQuadric(glquad); 
//  
glquad = gluNewQuadric(); 
if (big_cone -- 1) 

{ // draw cone with eta2 such that  (vl/v2) - sin(eta2)/eta2 
if (eta2_kl > 1.5708) // so half-cone is pointing in V2 direction 

{ 
glTranslatef(O.Of, O.Of,  -cone_length  ); 
gluCylinder(glquad,cone_length*tan(-eta2_kl),0,cone_length,24,l); 
glTranslatef(O.Of, O.Of,  cone_length  ); 
} 

else 
{ 
gluCylinder(glquad,0, cone_length*tan(eta2_kl), cone_length,24,l); 
} 

} 

if (big_cone -» 2) 
{ // draw cone with eta2 such that  (vl/v2) - (sin(eta2)/eta2)«sin(eta2 - los) 
if (eta2c > 1.5708)   // so half-cone is pointing in V2 direction 

{ 
glTranslatef(O.Of, O.Of, -cone_length  ); 
gluCylinder(glquad,cone_length»tan(-eta2c),0,cone_length,24,l); 
glTranslatef(O.Of, O.Of, cone_length ); 
} 

else 
{ 
gluCylinder(glquad,0,cone_length»tan(eta2c),cone_length,24,1); 
} 

} 

// 
gluDeleteQuadric(glquad); 
glPopMatrix(); 

if (big_cone -- 2) 
{ 
// Draw a small sphere at (ellipsoid, cone) kiss point 
glPushMatrix(); 
glTranslatef(xyzl_0[0], xyzl_0[l], xyzl_0[2] ); // location of vehicle 1 
glTranslatef(rl_kiss[0], rl_kiss[l], rl_kiss[2] ); // location of kiss point 
for(ic-0; ic<-3; ic++) glfColor[ic] - glfColors[4][ic]; 
glMaterialfv (GL_FR0NT, GL_AMBIENT_AND_DIFFUSE, glfColor); 
glquad - gluNewQuadric(); 
// 
gluSphere(glquad, .2, 10, 10); // : name, rad ,slices, stacks 
gluDeleteQuadric(glquad); 
glPopMatrix(); 
} 

// Draw a small black sphere at expected intercept point 
glPushMatrix(); 
glTranslatef(xyz_T2_max[0], xyz_T2_max[1], xyz_T2_max[2]); // location of intercept 
for(ic-0; ic<-3; ic++) glfColor[ic] - glfColors[7][ic]; 
glMaterialfv (GL_FR0NT, GL_AMBIENT_AND_DIFFUSE, glfColor); 
glquad - gluNewQuadric(); 
// 
gluSphere(glquad, .2, 10, 10); // : name, :14i »slices, stacks 



gluDeleteQuadric(glquad) ; 
glPopMatrix(); 

/. »/ 
// 
//  Draw the intercept surface  (aircraft at indentation) 
// 

intercept2(xyzl_0,Vl_0, xyz2_0.V2_0, 
&rl_error,T2_e_z, x_s,y_s,z_s, xyz_T2_max, accel_l, accel_2); 

DrawSurface(x_s, y_s, z_s, T2_e_z, accel_l, accel_2, accel_l_limit, accel_2_limit); 
/« »/ 
// 
// Render the scene in the pixel buffer 
// 
SwapBuffers (hdc); 

} 
/• »/ 

void initialize_state(float xyzl_0[3],float xyz2_0[3],float Vl_0[3].float V2_0[3], 
float dx0[3]. float Vl[3],float V2[3]) 

{ 
int ij; // to save initial aircraft»missile state 

for(ij-0; ij<-2; ij++)   //  save initial aircraft,missile state 
{ 
dxO[ij]   - xyz2_0[ij]   - xyzl_0[ij]; 
Vl[ij]   - Vl_0[ij]; 
V2[ij]   - V2_0[ij]; 
} 

eta2_kl  - cone2(Vl. V2); 
} /» »/ 
float cone2(float Vl[3], float V2[3]) 
// Compute eta2 such that vl/V2 - sin(eta2)/eta2 - a + b»eta2 + c*eta2A2 + ... 
{ 
float vl, v2, eta2_kl, y, w; 
float a,b,c,d,6,f,g; 
float    C,D,E,F,G; 

a - l.Of; 
b - -a/(2.f»3.f); 
c = -b/(4.f«5.f); 
d - -c/(6.f*7.f); 
e - -d/(B.f*9.f); 
f - -e/(10.f»ll.f); 
g -  -f/(12.f«13«f); 

C - -c; 
D - 2*c«c-b»d; 
E - -5»c»(c»c-b»d) - b*b»e; 
F - 7«c«c»(2*c»c-3»b»d)+3*b»b»(d*d+2*c«e) - b»b«b»f; 
G - 42*c«c*c«(2*b«d-c«c)-26*b«b»c«(d»d+c»e)+7«b»b»b»(d*e+c*f)-b»b«b»b»g; 

vl  -   (float)   sqrt(Vl[0]»Vl[0]+Vl[l]»Vl[l]+Vl[2]«Vl[2]); 
v2  -   (float)   sqrt(V2[0]*V2[0]+V2[l]«V2[l]+V2[2]»V2[2]); 
y = vl/v2; 
w -   (y-a)/(b«b); 

/« invert the series for y - sin(x)/x     »/ 
if (vl<v2) //  so b«w > 0 
eta2_kl - (float) sqrt(b*w»(l+C»w+D*w»w+E*w»w»w + F*w»w»w»w + 0»w«w*w*w«w)); 

return eta2_kl; 
} 

/» intercept2.c 

gcc intercept2.c -Wall -lm 

'/.  This program plots the intercept surface for a missile pursuing an aircraft. 
Z    Mike Elgersma  July 27, 1995      Mod for any VI Aug 20, 1995 
'/.  

15 



X.  For vehicle_l with (x in R~3) and initial velocity vector VI(0). the 
V.  locus of points that can be gotten to at time Tl. given any possible 
X  CONSTANT transverse acceleration is given by: 
% 
X || x - xl(0) ||-2 ( || (x - xl(0)) x V1(D) || ) 
X.  SI:    • arctan( ) - Tl 
X II (x - xl(0)) x V1(0) || (   (x - xl(0)) . V1(0)   ) 
y. 
y. 
Z  For vehicle_2 with (x in R^3) and initial velocity vector V2(0), the 
'/.  locus of points that can be gotten to at time T2, given any possible 
'/.  CONSTANT transverse acceleration is given by: 
'/. 
X || x - x2(0) ||-2 ( || (x - x2(0)) x V2(0) || ) 
'/.  S2:    « arctan( ) - T2 
y. II (x - x2(0)) x V2(0) ||        (   (x - x2(0)) . V2(0)   ) 
y. 
x 
y.  The intersection of surfaces SI and S2 gives the curve on which the two 
X  vehicles could meet at time Tl - T2. 
'/. 
y.  The union of all such curves (union over all intersect times) gives a surface 
y.  on which all intercepts must occur. 
X  
'/.  Use polar coordinates about xl(0), 

X I    V1_0 ] [cos (eta 1) ] 
'/.  x - xl(0) » rl(etal,zetal)*[ , Vl_0_perp]»[sin(etal)»sin(zetal)] 
X [||V1_0|| ] [sin(etal)»cos(zetal)] 
y. 
y. < 
'/.               rl    etal 
XT1 •  
'/. V1(0) sin(etal) 

X r2    eta2 
y. T2 - —   
'/. V2(0) sin(eta2) 
y. 
X Set rl_old - 0 
y. For etal - pi-eps to 0 
'/. For zetal » -pi  to pi 
'/. 
X rl2 - I x2(0) - xl(0) | 
y. For iter - 1 to 4 
'/. r2_over_rl2 - sqrt (rl_over_rl2*rl_over_rl2 - 2*cos_phi*rl_over_rl2 +1); //law of cosines 
'/. eta2 - acos( (cos_los+rl_over_rl2»cos_gam) / r2_over_rl2 );// V2_unit dot x_rainus_x2_unit 
'/. k_of_eta » kO * eta2 / sin(eta2); 
y. rl_over_rl2 - k_of_eta * r2_over_rl2; 
y. End iter 
X 
'/. End // zetal 
X    End // etal 
X  

rl2 - | x2(0) - xl(0) | 
x2_minus_xl_unit - (x2(0) - xl(0)) / rl2; 
v2 - |V2(0)| 
V2_unit - V2(0) / v2; 
vl - |V1(0)| 
Vl_unit - V1(0) / vl 
Vl_perp - 
cos_los = - x2_minus_xl_unit dot V2_unit 

For etal - pi-eps to 0 
eel - cos(etal); sei - sin(etal); 
kO - (vl/v2) • sin(etal)/etal; 

For zetal - -pi  to pi 

czl - cos(zetal); szl - sin(zetal); 
x_minus_xl_unit - [Vl_unit, Vl_perp]»(cel, sl61*szl, sel»czl) 



cos_phi - x2_minus_xl_unit dot x_minus_xl_unit 
cos_gam -        V2_unit dot x_minus_xl_unit 

rl_over_rl2 - 0; // initialize iteration 
// Then iterate the following equations: 
For ik = 1 to 4 

r2_over_rl2 - sqrt(rl_over_rl2«rl_over_rl2 - 2*cos_phi»rl_over_rl2 + 1); //law of cosines      " 
eta2 - acos( (cos_los+rl_over_rl2«cos_gam) / r2_over_rl2 );// V2_unit dot x_minus_x2_unit 
k_of_eta - kO » eta2 / sin(eta2); 
rl_over_rl2 - k_of_eta * r2_over_rl2; 

end // of ik loop 

//Exit iteration with: '■ 
rl - rl_over_rl2 ■»■ rl2; 
r2 « r2_over_rl2 * rl2; 
T2 - (r2/v2) * eta2/sin(eta2); 
x_surface - xl(0) + rl*(Vl_unit»cos_etal, Vl_perp*[sel*szl, sel»czl]); 

end // zetal u 
end // etal — - s 
X  \ 
«/ 
void intercept2(float xyzl_0[3], float Vl_0[3], float xyz2_0[3], float V2_0[3], 

float »rl_error» float T2_e_z[num_zeta+1][num_eta+l], ;• 
float x_s[num_zeta+l][num_eta+l], float y_s[num_zeta+l][num_eta+l], \ 
float z_s[num_zeta+l][num_eta+l], float xyz_T2_max[3], 
float accel_l[num_zeta+l][num_eta+l], 
float accel_2[num_zeta+l][num_eta+l]) \ 

{ 1 

int i, j, k; 

float rl, rl_e_z[num_zeta+l][num_eta+l]; I 
float Vl_perp[3] [2], cross[3], norm; '' 
float etal, zetal, eta2; 
float Tl, T2, T2_max; f 

//  | 
float rl2, r2_over_rl2. rl_over_rl2, rl_over_rl2_old; 
float vl, Vl_unit[3]; 
float v2, V2_unit[3]; ) 
float cos_los, cos_gam, cos_phi; I 
float sei,eel, szl,czl; 
float kO, k_of_eta; 
float eta2c; // convergence test I 
float x_minus_xl_unit[3], x2_minus_xl_unit[3]; | 

rl2 - (float) sqrt( (xyz2_0[0]-xyzl_0[0]) * (xyz2_0[0]-xyzl_0[0]) + 
(xyz2_0[l]-xyzl_0[l]) • (xyz2_0[l]-xyzl_0[l]) + f' 
(xyz2_0[2]-xyzl_0[2]) • (xyz2_0[2]-xyzl_0[2]) ); 

x2_minus_xl_unit[0] - (xyz2_0[0]-xyzl_0[0]) / rl2; 
x2_minus_xl_unit[l] - (xyz2_0[l]-xyzl_0[l]) / rl2; 
x2_minus_xl_unit[2] - (xyz2_0[2]-xyzl_0[2]) / rl2; 

v2 - (float) sqrt(V2_0[0]»V2_0[0] + V2_0[1]*V2_0[1] + V2_0[2]*V2_0[2]); 
V2_unit[0] - V2_0[0]/v2; 
V2_unit[l] - V2_0[l]/v2; 
V2_unit[2] - V2_0[2]/v2; 

cos_los - - x2_minus_xl_unit[0]*V2_unit[0] 
- x2_minus_xl_unit[l]»V2_unit[l] 
- x2_minus_xl_unit[2]»V2_unit[2]; j 

vl - (float) sqrt(Vl_0[0]»Vl_0[0] + V1_0[1]«V1_0[1] + V1_0[2]»V1_0[2]); 
Vl_unit[0] - Vl_0[0]/vl; 
Vl_unit[l] - V1_0[1]/V1; >■ 
Vl_unit[2] - Vl_0[2]/vl; \ 

// form the first vector orthogonal to V1_0 
if ( fabs(Vl_0[0]) > .5»vl ) < 

{ 
Vl_perp[0][0]   -  -V1_0[1]/   (   (float)   sqrt(Vl_0[l]»Vl_0[l]   + V1_0[0]»V1_0[0])   ); 
Vl_perp[l][0]   -    V1_0[0]/   (   (float)   sqrt(V1_0 17]«V1_0[1]  + V1_0[0]»V1_0[0])   ); 



Vl_perp[2]f0]   -    O.Of; 
} 

else 
{ 
Vl_perp[0][0]   -    O.Of; 
Vl_perp[l][0]   -    Vl_0[2]/   (   (float)   sqrt(V1_0[2]«V1_0[2]   + V1_0[1]«V1_0[1])   ); 
Vl_perp[2][0]   -  -V1_0[1]/   (   (float)   sqrt(V1_0[2]»V1_0[2]   + V1_0[1]«V1_0[1])   ); 
} 

// form the second vector orthogonal to V1_0 
cross[0]   - Vl_0[l]«Vl_perp[2][0]   - Vl_0[2]»Vl_perp[l][0]; 
crossfl]   « Vl_0[2]«Vl_perp[0][0]   - Vl_0[0]»Vl_perp[2][0]; 
cross[2]   = Vl_0[0]«Vl_perp[l][0]   - Vl_0[l]«Vl_perp[0][0]; 
norm =■   (float)   sqrt(cross[0]»cross[Q]+cross[1]»cross[1]+cross[2]«cross[2]); 
Vl_perp[0][1]   - cross[0]/norm; 
Vl_perp[l][1]   - cross[lj/norm; 
Vl_perp[2][1]   » cross[2]/norm; 

T2_max  -  O.Of; // initialize 
»rl_error - O.Of; // initialize 

for (j-0; j<-num_eta; j++) 
{ /» start eta at pi, where rl-0 is the correct answer */ 
etal -.(pi * (num_eta-j) )/num_eta; 
sei - (float) sin(etal); 
eel » (float) cos(etal); 
if ( fabs(etal) < .0001) kO - vl/V2;       // sin(etal)/etal - 1 
else kO - (vl/v2) • (float) sin(etal)/etal; 
for (i»0; i<»num_zeta; i++) 

{ 
zetal - (2»pi » i)/num_zeta; , 
szl » (float) sin(zetal); 
czl - (float) cos(zetal); 

x_minus_xl_unit[0] - Vl_unit[0]»cel + Vl_perp[0][0]»sel«szl + Vl_perp[0][l]»sel»czl; 
x_minus_xl_unit[l] - Vl_unit[l]»cel + Vl_perp[l][0]»sel»szl + Vl_perp[l][l]«sel«czl; 
x_minus_xl_unit[2] - Vl_unit[2]»cel + Vl_perp[2][0]»sel»szl + Vl_perp[2][l]»sel«czl; 

cos_phi- x2_minus_xl_unit[0] » x_minus_xl_unit[0] + 
x2_minus_xl_unit[l] « x_minus_xl_unit[1] + 
x2_minus_xl_unit[2] * x_minus_xl_unit[2]; 

cos_gam - V2_unit[0] » x_minus_xl_unit[0] + 
V2_unit[l] * x_minus_xl_unit[1] + 
V2_unit[2] • xjminus_xl_unit[2]; 

if   (j<2) 
{ 
rl  =  O.Of; 
rl_over_rl2  - rl / rl2; 
} 

else 
{ 
rl  -      rl_e_z[i][j-1]; /*  last value   (comprimise speed vs diverge)   »/ 
rl  -  O.Of;  // prevent divergence 
rl  -  2»rl_e_z[i][j-1]   - rl_e_z[i][j-2];  /*  linear interp   (speedier)   •/ 
rl_over_rl2  - rl / rl2; 
} 

for  (k-1;  k<-num_iter; k++) 
{ 
rl_over_rl2_old - rl_over_rl2; // save old value for convergence test 
r2_over_rl2-(float)sqrt(rl_over_rl2»rl_over_rl2-2»cos_phi»rl_over_rl2+ l);//law of cosines 
eta2-(float)acos((cos_los+rl_over_rl2»cos_gam)/r2_over_rl2);//V2_unit dot x_minus_x2_unit 
k_of_eta - kO • eta2 / (float) sin(eta2); 
rl_over_rl2 » k_of_eta « r2_over_rl2; 
} /» end of k loop »/ 

Tl - (rl_over_rl2_old«rl2/Vl) • etal/ (float)sin(etal); 
T2 - (r2_over_rl2   «rl2/v2) » eta2/ (float)sin(eta2); 

eta2c - (float) (3.14159 - asin(vl/v2) + acos(cos_los) ) / 2; 
//if ( (fabs(Tl - T2) < .1) & (eta2 < eta2c) )  // convergence test 
if ( fabs(Tl - T2) < .08 )  // convergence "lfet 



{ 
rl  - rl_over_rl2 » rl2; 
T2_e_z[i][j]   - T2; 
} 

else 
{ 
rl - rl_e_z[i][j-1]; //  no convergence, so use last value of radius 
T2_e_z[i][j] = O.Of; //  no convergence flagged. Later, set color - transparent 

rl_e_z[i][j]   - rl; 
*_s[i][j]  " xyzl_0[0] + 

rl*(Vl_unit[0]»cel + Vl_perp[0][0]»sel*szl + Vl_perp[0][l]»sel*czl); 
y-s[i][j]   - xyzl_0[l] + 

rl«(Vl_unit[l]»cel + Vl_perp[l][0]»sel*szl + Vl_perp[l][l]»sel*czl); 
z_s[i][j]   - xyzl_0[2] + 

rl»(Vl_unit[2]«cel + Vl_perp[2][0]*sel»szl + Vl_perp[2][l]»sel»czl); 

accel_l[i][j]  - 2.f«etal • vl/Tl; // angle«radius - v»T»        accel  - v»v/radius ' 
accel_2[i][j]   - 2.f«eta2 • v2/T2; — 

if(T2_max < T2) 
{ 
T2_max - T2; 
xyz_T2_max[0]   - x_s[i][j]; ;' 
xyz_T2_max[1] - y_s[i j[j]; 
xyz_T2_max[2] - z_s[i][j]; 
} 

if( *rl_error <       fabs(rl_over_rl2-rl_over_rl2_old)*rl2)  // 0 if converged X 
{ *rl_error - (float)fabs(rl_over_rl2-rl_over_rl2_old)*rl2; } 

} /* end of i loop */ 
} /» end of j loop */ i 
} /*  end of function intercept2 */ 

/. m/ 

void cross_prod(float cross[3], float vecl[3], float vec2[3]) 

{ 

crossfO] - vecl[l]*vec2[2] - vecl[2]«vec2[l]; 
crossfl] - vecl[2]*vec2[0] - vecl[0]»vec2[2]; <• 
cross[2] - vecli0]«vec2[l] -.vecl[l]«vec2[0]; 

I 

19 
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% intercept poly.m Mike Elgersma, Blaise Morton Sep 07, 1995 
%        -^ updated Sep 12, 1995 
%  Put in examples where the two solution components just touch.   Nov 06, 1995 
%  Balanced coeff in order8_poly before calling "roots". Nov 07, 1995 
%  Factored order8_poly when it was the square of a 4th order poly Nov 07, 1995 
% Plotted kiss point Nov 20' 1995 

clear 

h = figure('PaperPosition',[0.5,0.5,8,10])/  % So "print" gives large figure 
dataset «= 13; 
if (dataset==0) 

% If [u,v,w]-[l,l,l] is a solution, then a+b=sqrt(3)=d+e+f and k*k«=l 
% a = rand(l,l); b - sqrt(3)-a; % Cone_l coeff 
% de - rand(2,l); def-[de;sqrt(3)-[1,1]*de] % Cone_2 coeff 
% jc - 1- % Ellipsoid coeff 

elseif (data3et-=l) 
% Get all 8 solutions REAL for the following data. 
% Only 2 solutions satisfy the HALFcone restriction to within ||err|| < .06 
% Must comment out the recomputation of etal and eta2 inside the ii,jj loops. 
ab0_0 - [6; 14; 0];       % Cone_l coeff.   If a*b=0, then poly(u*2,vÄ2,w*2) 
def_0 -= [3;  4; 7] ;       % Cone_2 coeff 
kO - 1.5; % Ellipsoid coeff 
rl_ - [ 1;0;0]; 
r2_ - [-1;0;0]; 
etal - acos(l/norm(ab0_0)); 
eta2 - acos (l/norm(def_0')) ; 
Vl_ - ab0_0; % times any scalar 
V2_ - (def_0/norm(def_0)) * (norm(Vl_)*eta2*sin(etal)) / ( k0*etal*sin(eta2)); 
%  

elseif (dataset==2) 
% Two eta half-cones intercept in 2 -circles 
rl_ - [ 1;0;0]; 
r2_ - [-1;0;0]; 
Vl_ - [-1; .1; .3 ]; 
V2_ - [ 3; .2; .1 ]; 
%  

% Note that datasets 3,4,5,6 have Vl_, V2_, and r2_ - rl_ nearly orthogonal 
elseif (dataset==3) 

% Solution-Sphere just smoothly merges with Solution-half-cone 
rl_ = [0;0;0]; 
r2_ = [.10; 3.; -2 ]; 
Vl_ - [1.15; .1; .1 ];  % |V2|/|V1| - 3.113 < pi 
V2_ = [.10; 2.; 3.]; 
%  

elseif (dataset==4) 
% Solution-Sphere just touches Solution-half-cone 
rl_ - [0;0;0]; 
r2_ - [.10; 3.; -2 ]; 
Vl_ - [1.147; .1; .1 ];  % |V2|/|V1| - 3.121 < pi 
V2_ - [.10; 2.; 3.]; 
%  

elseif (dataset~5) 
% Solution-Sphere just misses Solution-half-cone 
rl_ - [0;0;0]; 
r2_ - [.10; 3.; -2 ]; 
Vl_ - [1.144; .1; .1 ];  % IV2|/|VI| = 3.129 < pi 
V2_ - [.10; 2.; 3.]; 
%  

elseif (dataset==6) 
% Solution-Sphere just misses Solution-half-cone 
rl_ - [0;0;0]; 
r2 - [.10; 3.; -2 ]; 
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Vl_ - [1.14; .1; .1 ];  % |V2|/|VI| - 3.140 < pi 
V2_ - [.10; 2.; 3.]; 
%  

elseif (dataset«=7) 
% Get 4 real and 4 complex solutions. 
% The 4 real solutions satisfy the HALFcone restriction. 
% Must comment out the recomputation of etal and eta2 inside the ii,jj loops. 
ab0_0 « [-.6; 1.0; .0 ];   % Cone_l coeff.  If a*b=0, then poly(uA2,vÄ2,wÄ2) 
def_0 - [-.3; 1.3; .001];  % Cone_2 coeff 
kO - 1.02; % Ellipsoid coeff 
rl_ - [ 1;0;0]; 
r2_ - [-1;0;0]; 
etal - acos(l/norm(ab0_0)); 
eta2 - acos(l/norm(def_0)); 
Vl_ - ab0_0; % times any scalar 
V2_ - (def_0/norm(def_0)) * (norm(Vl )*eta2*sin(etal)) / ( k0*etal*sin(eta2)); 
%  

elseif (dataset--»8) . • 
% Random data in 5-dimensional set s 
rl_ •= [ 1;0;0]; 
r2_ = [-1;0;0]; 
Vl_ - [rand(2,l); 0]; J 
V2_ - rand(3,l); l 
%  

elseif (dataset««=9) 
% Yearly Report values used in figures 1 to 8: > 
rl_ - [0;0;0]; t 
r2_ - [6; -5; 4] ; 
Vl_ - [-.3; -.1; -.1]; 
V2_ - [-.2;   0; -.6]; > 
%  ! 

elseif (dataset=»=10) 
% Try to find cases where "sphere" and "cone" touch i 
rl_ - [ 1;0;0]; 
r2_ - [-1;0;0]; ; 

tmp - rand{3,l); 
Vl_ - [rand(2,l); 0]; ' 
V2_ - pi*norm(Vl_)*tmp/norm(tmp) ;  %  so v2/vl - pi £_ 
%  

elseif (dataset-=ll) 
% Put slow airplane almost behind fast missile | 
rl_ = [ 1;0;0]; % airplane K 
r2_ = [-1;0;0]; % missile 
Vl_ - [rand(2,l); 0]; F 
V2_ - [-3; .1; .2]; > 
%  

elseif (dataset==12) 
% Degenerate back-substitution 
rl_ - [ 1;0;0]; % airplane 
r2_ - [-1;0;0]; % missile 
Vl_ - [ 0; 1; 0]; 
V2_ - [ 0; 0; 1]; 
%  ; 

elseif (dataset==13) 
% Solution set components just touch when: 
% (norm(V2_)/norm(Vl_)) * (sin(eta_c)/eta_c) * sin(eta_c - los) - 1 f 
% and etal - 1 at that point. * 
r2_ - rand(3,1);% missile 
rl_ «= rand(3,l);% airplane 
v2 - rand; junk - rand(2,1); los - 1.4 
V2_ - v2*[(rl_ - r2_)/norm(rl_ - r2_), null((rl_ - r2_)') ] * ... 

[cos(los); sin(los)*junk/norm(junk)]; 
% f 
%  los = acos( V2_'*(rl_ - r2_) / (norm(V2_)*norm(rl_ - r2_)) ) 
% 
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% max    [sin(eta) ] 
%  V1/V2 < [  * sin(eta - los) ]    for separate solution 
%        0<los<eta<pi [ eta ] components 

% (los)       max    [sin(eta) ] los 
%.724*(.99-sin( )) < [ *sin(eta - los) ]<.724* (1.03-sin( )) 
% ( 2 )   0<los<eta<pi[ eta ] 2 

vl_over_v2«=.724*(0.99-sin(los/2));%merged solution component for some unit_Vl 
vl_over_v2=.724*(1.30-sin(los/2)); % separate solution components 
vl_over_v2-.724*(1.01-sin(los/2)); % 
Vl_dir - skew(r2_ - rl_)*skew(r2_ - rl_)*V2_; % perp to rl2 in [rl2,V2] plane 
Vl_dir - Vl_dir + .001*rand(3,1); % planar data  (degenerate order8_poly) 
unit_Vl = Vl_dir/norm(Vl_dir); 

Vl_ -= vl_over_v2*norm(V2_)*unit_Vl; 
%  

end 

los «= acos (V2_' * (rl_-r2_) / (norm(V2_) *norm(rl_-r2_))) ; 
% sin(2*eta2c - los) - vl_over_v2  at the max 
eta2c - (pi - asin(vl_over_v2) + los)/2; % angle from V2_ to touch point 
ratio»(norm(V2_)/norm(Vl_))*(sin(eta2c)/eta2c)*sin(eta2c-los)% > 1  separate sol 

unit - (rl_ - r2_)/norm(r2_ - rl_); 
Rot « [unit, null(unit')J; 
Rot -= Rot*diag([l; 1; det(Rot)]); 

stretch - 2/norm(rl_ - r2_); 
orig - (r2_ + rl_)/2; 
rl_3 "• stretch*Rot'* (rl_ - orig); 
r2_s - stretch*Rot'*(r2_ - orig); 
Vl_s - stretch*Rot'*Vl_; 
V2_s - stretch*Rot'*V2_; 

ca - Vl_s(2)/norm(Vl_s(2:3)); 
sa - Vl_s(3)/norm(Vl_s(2:3)); 
Rotx = [1,  0, 0; 

0, ca, sa; 
0,-sa, ca]; 

VI = Rotx*Vl_s; % •= [xxx,yyy, 0] 
V2 •= Rotx*V2_s; 

%  
eps = .0013; 
ii_max » 400 
jj_max •» 100; 
n_pts = ii_max*jj_max; 
sol_set « zeros (3, 8*n__pts) ; 
max sols •= 0; % max number of real solutions that satisfy HALF-cone 
num root multl - 0; 
num root mult2 - 0; 
num root mult4 - 0; 
num 0 sols - 0; 
num 1 sols - 0; 
num 2 sols - 0; 
num 3 sols - 0; 
num 4 sols -= 0; 
num 5 sols - 0; 
num 6 sols - 0; 
num 7 sols = 0; 
num_8_sols Mt 0; 

for ii»0:ii max-1; 
IX 
for jj=0:j] _max-l; 
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% eta2 in outer loop, since  eta2<eta2c «> solution component 1 
eta2 - (pi)*ii/ii_max + eps; % eps avoids sin(0)/0 
etal = (pi)*jj/jj_max + eps; % 

a = abO(l) 
d -= def (1) 

abO  - Vl/(norm(Vl)*cos(etal)) 
def  - V2/(norm(V2)*cos(eta2)) ; 
k- (norm(Vl)*eta2*sin(etal))/ 

(norm(V2)*etal*sin(eta2)); 
mil - d*d-l; m22 - e*e-l; m33 
ml2 - d*e;   m23 - e*f;  ml3 

b = ab0(2) ; 
e - def(2); f def(3); 

f*f-l; 
f*d; 

Ellipsoid - diag([-l,k*k,k*k-l,k*k-l]); 
% .  

% All polynomials are wrt to variable v. 
v2 - 11/ 0, 0]; v4 - [1, 0, 0, 0, 0]; 
v6 - [1, 0, 0, 0, 0, 0, 0]; u0v8w0 - [1, 0, 0, 0, 0, 0, 0, 0, 0] ; 

u2 - (l/(k*k))*[(l-k*k)*b*b, (l-k*k)*2*a*b, (l-k*k)*(a*a-l) + 1]; 
u4 - conv_(u2,„u2)i«6^ » convJuA, u2); u8v0w0 « conv(u4, u4) ; 

w2 - [b*b-l, 2*a*b, a*a-l]; 
w4 = conv(w2, w2); w6 = conv(w4, w2); u0v0w8 = conv(w4, w4) ; 

u6v2w0 
u6v0w2 
u0v6w2 
u0v4w4 

[u6, 0, 0];  u4v4w0 - [u4, 0, 0, 0, 0];  u2v6w0 - [u2, 0, 0, 0, 0,0, 0] ; 
conv(u6,w2); u4v2w2 «= [conv(u4, w2), 0, 0] ; u2v4w2 «=[conv(u2, w2), 0, 0, 0, 0]; 
[w2, 0,0, 0,0, 0,0] ; u4v0w4 = conv(u4,w4);  u2v2w4 «= [conv(u2, w4), 0, 0] ; 
[w4,0,0,0,0]; u2v0w6 = conv(u2,w6); u0v2w6 = [w6,0,0]; 

order8_poly 
mllA4 
m22A4 
m33A4 

3*mllA2*m22A2 
3*mllA2*m33A2 
3*m22A2*m33A2 

2*<8*ml2A2*(ml2A2 - mll*m22) + 
2*(8*ml3A2*(ml3A2 - mll*m33) + 
2*(8*m23A2*(m23A2 - m22*m33) + 

4*mllA2*(mll*m22 - 2*ml2A2 
4*mllA2*(mll*m33 - 2*ml3A2 
4*m22A2*(mll*m22 - 2*ml2A2 
4*m22A2*(m22*m33 - 2*m23A2 
4*m33A2*(m22*m33 - 2*m23A2 
4*m33A2*(mll*m33 - 2*ml3A2 

2*m23A2) - 4*mll*(m22*ml3A2 + m33*ml2A2 
8*ml2*ml3*(2*mll*m23 - ml2*ml3) 

4*( m22A2*(3*m33*mll - 2*ml3A2) - 4*m22*(mll*m23A2 + m33*ml2A2 
8*ml2*m23*(2*m22*ml3 - ml2*m23) 

4*( m33A2*(3*mll*m22 - 2*ml2A2) - 4*m33*(mll*m23A2 + m22*ml3A2 
8*ral3*m23*(2*m33*ml2 - ml3*m23) 

4*( mllA2*(3*m22*m33 

* 
* 
* 

* 
* 
* 
* 
* 
* 
+ 

+ 
* 
+ 
* 

u8v0w0 
u0v8w0 
u0v0w8 
u4v4w0 
u4v0w4 
u0v4w4 
u6v2w0 
u6v0w2 
u2v6w0 
u0v6w2 
u0v2w6 
u2v0w6 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

u4v2w2 + 

u2v4w2 + 

u2v2w4; 

I] 

order8_poly - order8_poly / sqrt (order8_poly (1) * order8_poly (9) ) ; 

% Linear poly in uv, whose coeff are poly in u2,v2,w2: 
uv0_coeff - mllA2*u4 + (4*ml2A2 + 2*mll*m22)*conv(u2,v2) + m22A2*v4 + ... 
(-4*ml3A2+2*mll*m33)*conv(u2,w2) + (-4*m23A2+2*m22*m33)*conv(v2,w2) + m33A2*w4; 

uvl coeff - 4*(mll*ml2*u2 + ml2*m22*v2 - 2*ml3*m23*w2 + ml2*m33*w2); 

v - zero3(8,l);  u - zeros(8,1);  w = zeros(8,1); 
x = zeros(8,1);  y - zeros(8,1); z = zeros(8,1); 
%  
% If the data is planar the 8th order poly factors. 
% If 8th order polynomial is the square of a 4th order poly, nroot3n may crash 
% 
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[order4_poly, err_j>4] - factor_poly(order8_poly); 
if (err_p4 < .005) 

[order2_poly, err_p2] - factor_poly(order4_poly); 
if (err_p2 < .005) 

root_multiplicity » 4; 
v_quad - root3(order2_poly); 
for iv«l:2; 

v(4*iv-3) - v_quad(iv); 
v(4*iv-2) «= v_quad(iv); 
v(4*iv-l) - v_quad(iv); 
v(4*iv-0) - v_quad(iv); 

end 
else 

root_multiplicity « 2; 
v_double - roots(order4_poly); 
for iv»l:4; 

v(2*iv-l) - v_double(iv); 
v(2*iv-0) » v_double(iv); 

end 
end 

else 
root_multiplicity »1; 
v - roots(order8_poly); 

end 
%  

if ( root_multiplicity <» 4) 
for j - 1:8 

u(j) - -polyval(uvO_coeff,v(j)) / ( v(j) * polyval(uvl_coeff,v(j)) ); 
end 

else 
for j - 1:4 
u(2*j-l) - sqrt( polyval(u2,v(2*j)) ); 
u(2*j  ) - -sqrt( polyval(u2,v(2*j)) ); 

end 
end 

if ( root_multiplicity ~ 1) 
for j - 1:8 

% Linear poly in w, whose coeff are poly in u,v,w2 
w0_coeff - m33*polyval(w2,v(j)) + mll*u(j)Ä2 + 2*ml2*u(j)*v(j) + m22*v(j)A2; 
wl_coeff - 2*{ml3*u(j) + m23*v(j)); % wl_coeff=0 (since f=0) for planar data 
w(j) = -w0_coeff/wl_coeff; 

end 
elseif ( root_multiplicity ™ 2) 

for j - 1:4 
w(2*j-l) -  sqrt( polyval(w2,v(2*j)) ); 
w(2*j-0) ■= -sqrt( polyval (w2,v(2*j)) ); 

end 
elseif ( root_multiplicity «= 4) 

for j - 1:2 
w(4*j-3) - sqrt( polyval(w2,v(4*j)) ); 
w(4*j-2) - sqrt( polyval(w2,v(4*j)) ); 
w(4*j-l) - -sqrt( polyval(w2,v(4*j)) ); 
w(4*j-0) » -sqrt( polyval(w2,v(4*j)) ); 

end 
end 

for j - 1:8 
% Bi-Rational transformation 
x(j) - (u(j)+l)/(u(j)-l); 
y(j) -  2*v(j)/(u(j)-l); 
z(j) -  2*w(j)/(u(j)-l); 

end 
uvw = [u,v,w]; 
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xyz - [x,y,z]; 
n_sols - 0; % count how many of the 8 
eps_err = .05; 
for j=l:8 
vec - [x(j)-l; x(j)+l; y(j); z(j)]; 
vec_l - [x(j)-l; y(j); z(j)]; 
vec_2 - [x(j)+l; y(j); z(j)]; 
err4 -= norm(vec 1) - k*norm(vec 2) ; 

roots are real and satisfy HALF-cone 

err5 
err6 

Vl'*vec_ 
V2'*vec" 

cos(etal)*norm(Vl)*norm(vec 
cos(eta2)*norm(V2)*norra(vec 

% Ellipsoid is square of this, 
1); % HALF cone_l 
2); % HALF cone 2 

%g %g %gf, err4, err5, err6) ]) %disp([ sprintf('err4, err5, err6 
if( { abs(imag(xyz(j,l))) < .02 + .02*abs(real(xyz(j,1))) ) 

( abs(imag(xyz(j,2))) < .02 + .02*abs(real(xyz(j,2))) ) 
( abs(imag(xyz(j,3))) < .02 + .02*abs(real(xyz(j,3))) ) 
(norm([err4,err5,err6])<eps_err) ) 

sol_set(:, j + 8* (ii* jjjmax + jj) ) •= xyz(j,:)'; 
n_sols ■= n_sols + 1; 
if (root_multip.licityL - ==1) num_root_multl ■» num_root_multl 
if(root_multiplicity ==2) num_root_mult2 - num_root_mult2 
if(root_multiplicity —4) num_root_mult4 - num_root_mult4 

else 
sol_set(:, j + 8*(ii*jjjmax + jj) ) - [0;0;0]; 

end 
end 

1; 
1; 
1; 

end; 
end; 
end; 

if(n sols —= 0) num 0 sols = num 0 sols + 1; end; 
if(n sols -= 1) num 1 sols - num 1 sols + 1; end; 
if(n sols ~ 2) num 2 sols - num 2 sols + l; end; 
if(n sols » 3) num 3 sols - num 3 sols + 1; end; 
if(n sols ~ 4) num 4 sols - num 4 sols + 1; end; 
if(n sols asacs 5) num 5 sols «= num 5 sols + 1; end; 
if(n sols == 6) num 6 sols ss num 6 sols + 1; end; 
if(n sols HSSE 7) num 7 sols - num 7 sols + 1; end; 
if(n sols ~ 8) num 8 sols - num 8 sols + 1; end; 

if (n_sols > max_sols) 
max_sols = n_sols 
etal_max_sols •= etal 
eta2_max_sols - eta2 
multiplicity_sols - root_multiplicity 

end 

end % end of jj loop 
end % end of ii loop % 

max sols 

% rotate and project 
aa = -.37; bb= .34; cc 
aa 
S • 

cc 
.35; 

-.45; 
three small angles (radians) 
three small angles (radians) .47; bb=-.44; 

[  0  cc -bb; 
-cc  0  aa; 
bb -aa  0] ; % skew symmetric 

C - (eye(3)-S)/(eye(3)+S);  % Cayley Transform from RA3 to SO(3) 
sol_set_rot - C*sol_set; 
soil - 8*jj_max*ii_max*eta2c/pi; % solution component 1 
sol2 - 8*jj_max*ii_max; % solution component 1 
plot(sol_set_rot(l,l:soll),sol_set_rot(2,l:soll), ' .') ; 
hold on 
plot(3ol_set_rot(1,1+soll:sol2),sol_set_rot(2,I+30II:sol2), '+'); 
dr «= r2_ - rl_; 
title_txtl=sprintf('x2-xl=(%5.3f %5.3f %5.3f ),  ', dr(1),dr(2),dr(3)); 
title_txt2=sprintf('Vl=(%5.3f %5.3f %5.3f ),  ',  Vl_(l), Vl_(2), Vl_(3)) 
title_txt3=sprintf('V2-(%5.3f %5.3f %5.3f )',  V2_(l), V2_(2), V2_(3)); 
title([title txtl, title txt2, title txt3]) 

I 
t. 
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delta_r - norm(rl_s - r2_s) * tan ( eta2c - los); 
kiss_point - C* ( rl_s + delta_r*Vl/norm(Vl) ); % in screen coordinates 
plot( kiss_point(1), kiss_point(2), 'o') 

airplane_tail - C*(rl_s - V1/.2); 
airplane_nose » C*rl_s; 
plot( airplane_nose(l), airplane_nose(2), 'o'); 
plot([airplane_nose(l),airplane_tail(1)],[airplane_nose(2),airplane_tail(2)]); 

missile_tail - C*(r2_s - V2/.2); 
missile_nose - C*r2_s; 
plot( missile_nose(l),  missile_nose(2), '*'); 
plot([missile_nose(1),missile_tail(1)],[missile_nose(2),missile_tail(2) ]) ; 

% The origin is midway between the airplane, rl_s=(1,0,0) and missile (-1,0,0) 
axis([-1,2,-2,1]); 
%axis([-3,3,-3,3]); 
%axis([-5,5,-5,5]); 
%axis([-10,10,-10,10]) ; 
hold off 

xlabeK'halfcone (etal) halfcone(eta2) ellipsoid(etal,eta2) 0<etal<pi 0<eta2<pi') 
v2_over_vl - norm(V2_)/norm (Vl_) ; 
v2_over_vl_touch - 1/ ( .724*(1.01-sin(los/2)) ); 
yt=sprintf('v2/vl = %3.2f,    v2/vl_touch = %3.2f',v2_over_vl,v2_pver_vl_touch) ; 
ytext2 - sprintfC   los = %1.2f,  max_sols -= %1.0f, los, max_sols) ; 
ytext3 - sprintfC   eta2c - %1.3f   ', eta2c) ; 
ytext4-sprintf('kiss_pt - xl + %5.3f * Vl_unit',delta_r/stretch); 
ylabel([yt, ytext2, ytext3, ytext4]) 

% print 

num_124_root_mult = [num_root_multl niam_root_mult2 num_root_mult4] 

real_012345678_sols «= [num_0_sols nvim_l_sols num_2_sols num_3_sols  
num_4_sols num_5_sols num_6_sols num_7_sols num_8_sols] 

disp('num_124_root_mult * [1;1;1] - real_012345678_sols * [0;1;2;3;4;5;6;7;8]') 

save intercept_pol_dat 
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% vlv2_v3_lo3.m Mike Elgersma December 22, 1995 
%  
% See "Components of the Intercept Surface" in ecalm/nonlin/yearly_report.Oct95 
% See "Components of the Intercept Surface" in ecalm/nonlin/yearly_report.Dec95 
% 
% Cone and ellipsoid just touch (double root) when  vl/v2 - f(eta, los) 
% 
% For each value of los, 
%   1) compute the max, wrt eta, of f(eta,los) 
%  2) set max vl/v2 «= max f , 
% Plot max vl/v2  vs each such los. 
%  i 
% Find smallest vl/v2 that causes accel_2 to hit some constraint: 
% .. . T 

% 2*v2*v2*sin(eta2) ( 
% accel_2      solve for r2 and plug into next equation: 
% r2 

% Intercept surface just touches constant accel_2 surface at: ;. 
% 
% sin(etal)  VI        { rl sin(eta2)}      { ||(r_l-r_2)-r2*l_r2|| sin(eta2)} 
%  <= min { — } = min { „___} | 
%  etal    V2   eta2 { r2  eta2  )      { r2        eta2   } ! 
% 
%      {II     (cos(los))     (cos(eta2)) II ) - 
%      {|| rl2*(sin(los)) - r2*(sin(eta2)) II  sin(eta2) ) i 
% - min {  — ) €- 
%      { r2 eta2    ) 
% f 
% and rl2/r2 - accel_2 / accel_12*sin(eta2)    where accel_12 - 2*v2*v2/rl2 \. 
% 4 

% sin(etal)  VI        {  ||acel_2   (1) (cos(eta2-los)  I I 
%   — « min {  ||  (0) - sin(eta2)*(sin(eta2-los)) II / eta2 f 
%  etal    V2   eta2 {  |Iaccel_12 I I f 
% 
% < ( accel_2/accel_12 - sin(los) ) / los      (set eta2 •= los) 
% t 
%  t 
h= figure('PaperPosition',[0.5,0.5,8,10]);.  % So "print" gives large figure 
epss = le-9; f 
num_los =100; | 
los_min = epss; los_max = pi-epss; % 0 < los < pi 

los «■ zeros (l,num_los+l) 
max_vl_over_v2..« zeros (l,num_los+l) 
lower_bound — zeros(l,num_los+l) 
middle — zeros(l,num_los+l) 
difference - zeros(l,num_los+l) 
upper_bound = zeros(l,num_los+l) 
eta_at_max « zeros(l,num_los+l) 
eta_at_max_ - zeros(l,num_los+l) 
vl_over_v2_iter_con = zeros(l,num_los+l); 
d_los = (los_max - los_min)/num_los; 

accel - [.79, 1.0, 1.385]; 
min_vl_over_v2_accel « le9*ones(max(size(accel)),num_los+l); 
eta_at_min_accel-zeros(max(size(accel)),num_los+l); 

for i « l:num_los+l; 
i 
los(i) »= los_min + (i-l)*d_los; 

% Find max vl/v2 for separate solution components. No acceleration limit, 
for eta «= los (i) : .01 :pi-epss/2; 

%  
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% max vl/v2 for separate solution components. No acceleration limit. 
vl_over_v2 - (sin(eta)/eta) * abs(sin (eta - los(i))); 
if ( vl_over_v2 > max_vl_over_v2(i) ) 
max_vl_over_v2(i) - vl_over_v2; 
eta_at_max(i) «= eta; 

end 
%  

end 

% Find min vl/v2 that still hits acceleration limit on the pursuer. 
% The min switches branches (of intercept surface) when vl/v2 - sin(los/2) 
% avoid the 2nd branch (with eta2«=pi) by running eta2 from 0 to (los+pi)/2 
for ia - l:max(size(accel)) ; 
a •= accel (ia);  %  accel_2/(2*V2*V2/rl2); 
for eta - epss:.01:(3*los(i) + pi)/4 

%  
vl_over_v2_accel=norm([a;0]-sin(eta)*[cos(eta-los(i));sin(eta-los(i))])/eta; 
if ( vl_over_v2_accel < min_vl_over_v2_accel(ia,i) ) 
min_vl_over_v2_accel(ia,i) ■= vl_over_v2_accel; 
eta_at_min_accel(ia,i) —  eta; 

end 
% 

%  
end % end of eta loop 
if ( abs(sin(eta_at_min_accel(ia,i)))  > a ) %     accel_2 > a2 when vl-0 
min_vl_over_v2_accel(ia,i) - 0; 

end 
% 
end  % end of ia loop 

%max vl/v2  ~«=  .724* ( 1 - sin(los(i)/2) ); 
% 
lower_bound(i) - .724* ( 0.99 - sin(los(i)/2) ); 
middled)     - .724* ( 1.00 - sin (los (i)/2) ); 
upper_bound(i) - .724*( 1.03 - sin(los(i)/2) ); 
% 
differenced)  - .033 * exp(-.8*los (i)) * sin(l. 6*los (i)) ; 
%difference(i)  - .015 * sin(2*los(i)) / (1+(los(i)/1.5)*6; 
eta_at_max_(i) *= ( pi - asin(max_vl_over_v2 (i)) + los(i) )/2; 
vl_over_v2_iter_con(i) - (sin (eta_at_max_(i))/eta_at_max_(i) ) /  
sqrtd + (l/eta_at_max_(i) - l/tan(eta_at_max_(i))) *2 ); 

end 

%plot(los,max_vl_over_v2, los,vl_over_v2_iter_con) % need max first 
plot(los,max_vl_over_v2, los,upper_bound, los,lower_bound) 
titleCmax vl/v2 that satisfies separate solution component bound') 
ylabel('.724 ( .99 - sin(los/2) ) < vl/v2 < .724 ( 1.03 - sin(los/2) )') 
xlabel('los') 
axis([0,pi,0,1]) 
pause 

% plot(los,max_vl_over_v2 - middle, los,difference) 
% plot(los, max_vl_over_v2-lower_bound) 
% plot(los, max_vl_over_v2-upper_bound) 

% plot(los(1:num_los),eta_at_max(1:num_los)-eta_at_max_(1:num_los)) 

plot(eta_at_max_,max_vl_over_v2, eta_at_max_, vl_over_v2_iter_con) 
ylabeK'max vl/v2 separate solution.  vl/v2 iteration converge') 
xlabeK'eta at max') 
pause 

junk - zeros(max(size(accel)),num_los+l); 
for ii « 1:max(size(accel)) 
for ij " l:num_los+l 
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%junk(ii,ij) - min(accel(ii)/pi, (accel(ii) - sin(los(ij)))/los(ij) ); 
junk(ii,ij) - (accel(ii) - sin(los(ij)))/los(ij) ; 

end 
end 

%plot(los,sin(.5*los),  los,min_vl_over_v2_accel,  los,junk, los,max_vl_over_v2) 
plot(los,max_vl_over_v2, los,min_vl_over_v2_accel ) 
titletextl - 'max vl/v2 to guarantee:   (Solid) Separate sol components.   '; 
titletext2 - '(Dotted) accel2 < '; 
titletext3 - sprintf('[%4.2f, %4.2f, %4.2f]', accel(1),accel(2), accel(3)); 
t itle([t itletext1, t itletext 2, t itletext 3]) 
ylabel('vl/v2 - min_over_e (|[accel2;0] - sin(e)*[cos(e-los);sin(e-los)]I / e)') 
xlabel('los') 
axis({0,pi,0,l]) 

save vlv2 vs los 
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ABSTRACT 

In this paper we focus on the interrelationship be- 
tween state estimation filtering errors and their ultimate 
impact upon guidance algorithm performance. We com- 
pare the performance of proportional navigation guidance 
and robust guidance versus fuel optimal guidance in a sim- 
ple two-dimensional missile/target engagement. We find 
that with perfect state estimation both proportional nav- 
igation and robust guidance achieve small miss distances 
and come very close to matching the ideal fuel optimum 
response. However, in the presence of realistic state es- 
timation errors their performance degrades sharply. We 
explore the magnitude of this performance degradation 
and its impact on overall missile system performance. 

INTRODUCTION 

In a typical missle system design active or passive 
seeker information is input into a filter to obtain state 
estimates of the position, velocity and acceleration of the 
target. This information is then input into a guidance 
algorithm which uses it and a knowledge of intercept dy- 
namics to ultimately produce a missile acceleration com- 
mand profile. 

From our past experience with missile system de- 
sign we have noticed a clear need for understanding the 
impact of state estimation errors on guidance system per- 
formance. These two subsystems are typically designed 
independently by different engineers. The filter designer 
attempts to obtain the best possible state estimates, op- 
timizing a complex tradeoff between state estimation er- 
rors, complexity of filter designs, input noise characteris- 
tics and computing power requirements. Simultaneously, 
the guidance law designer conducts his design assuming 
that he will receive near perfect state information and as- 
suming that his algorithm is implementable by existing 
missile system hardware with little or no modification. 
His main concern is to tradeoff fuel consumption versus 
miss distance to achieve a satisfactory guidance law. 

The main drawback of the above scenario is that al- 
though the filtering and guidance subsystems are each de- 
signed independently, the accuracy of the state estimates 
has a large impact upon guidance law performance. 

To illustrate this impact we will compare the per- 
formance of three different guidance algorithms: fuel op- 
timal guidance, proportional navigation guidance and ro- 
bust guidance, using the simple two-dimensional guidance 
problem shown in Figure 1. Here, the target and the mis- 
sile are represented by point mass models where the target 
is denoted by the letter T and the missile is denoted by 
the letter M. The relative positions of the missile and tar- 
get are represented with respect to a xy-coordinate frame 
whose origin is always coincident with the location of the 
target. In this coordinate frame the target has zero veloc- 
ity and acceleration and is always located at the origin. 
Conversely, the missile always begins a relative distance 
from the target (origin) and is also moving relative to 
the target (origin) with some velocity and acceleration. 
To further simplify our example, we assumed no gravity 
effects (i.e. an exoatmospheric engagement). 

GUIDANCE ALGORITHMS 

In this section we will briefly discuss details of the 
three different guidance algorithms. The first algorithm, 
fuel optimal guidance, is quite similar to bang-bang con- 
trol and produces a theoretically achievable optimum level 
of performance. The second algorithm, proportion navi- 
gation guidance, is the most commonly used guidance al- 
gorithm in practice today due to its combination of good 
performance and easy implementation. The third algo- 
rithm, robust guidance, is based on some recently devel- 
oped ideas [Ting (1992)] designed to enhance the robust- 
ness of the guidance algorithm to state estimation errors. 
It requires more computation than proportional naviga- 
tion guidance and has not been implemented in practice. 
However, it has shown some good properties in some pre- 
liminary simulation studies. 

Fuel Optimal Guidance 

To assess the performance impact of estimation er- 
rors and different guidance algorithms on overall system 
performance, it is important to quantify the optimum 
achievable performance as a benchmark. In a realistic 
missile system this requires hitting the target with a min- 
imum of fuel expenditure, while simultaneously adhere- 
ing to hardware imposed acceleration limits. To this end, 
consider the linear system 

y = vy (1) 

v'y = a (2) 

where the maximum achievable acceleration is con- 
strained by a magnitude limit amax- The fuel opti- 
mal guidance problem can now be formulated as follows: 
Given any initial condition y(0) = y0 and tiy(0) = vv<> 

and a fixed final time IF find the acceleration profile a(t) 



which drives the system to the final condition y(tF) = 0 
and vy(tF) — free while minimizing the cost functional 

Jo 
I «(0 II dt. (2) 

This is a standard optimal control problem which 
can be solved via a straightforward application of the 
maximum principle [Athans and Falb (1971)]. The result- 
ing optimal control law is an 'accelerate and coast' single 
switch sequence of accelerations of the form (—omoi,0) 
or (+amai,0) depending on where the initial condition 
(yo,t>j,J lies in the (y, vy)-plane. The detailed optimal 
control law is given by: 

Case 1: If vu„ > '-*■■ thenv 

«(«) -A- -1     for 
0     for 

0<t<t3 

t3   <t<tF 
(3) 

where 

z — {?Va-amaxtF)+s/{amaxtF - vl0)
2 - (2amaly0 + v\a) 

(4) 
and 

V..     — 2 
(5) 

Case 2: If vyo = -^ then 

z(*) = {   0    for    0 < i < tF   } (6) 

Case 3: If vVo < -f£ then 

nn\-l  +1     f°r     0<t<t.   \ 
«(*)-(  +0    f0T    t,<t<tF  )• (?) 

where 

z = (yy0+amaltF)-^/(ajnaltF + vl0)
2 - (vl„ - 2amaxy0) 

(8) 
and 

*' = -T • (») 

It is clear that the fuel optimal guidance law is gov- 
erned by the location of the initial condition (y0, vy 

ative to the line 
«ti. = -- 

tF 

rel- 

(10) 

in the (j/,«y)-plane. If the initial condition lies on this 
line then the optimal guidance law is zero acceleration 
for all time because the vehicle is already on a homing 
trajectory with the target. If the initial condition lies 
above this line then the optimal guidance law is to apply 
maximum negative acceleration from time t=0 until the 
switching time t=t, and then to apply zero acceleration 
for the duration of the flight. Finally, if the initial con- 
dition lies below this line then the optimal guidance law 
is to apply maximum positive acceleration from time t=0 
until the switching time t=t, and then to apply zero ac- 
celeration for the duration of the flight.   Essentially, the 

concept of this guidance law can be summarized as fol- 
lows: Accelerate fully in either the positive or negative 
direction (whichever is appropriate) until the zero effort 
miss distance is zero and then coast in to hit the target. 

Proportional Navigation Guidance 

Proportional navigation is the most commonly used 
navigation algorithm in practice today. In this algorithm! 
the missile normal acceleration command is given by 

aN = KXVC (11) 

where K is a constant (typically between 2 and 5), X h 
the rate of change of theline-qf-sighLangle between the, 
missile and target and Vc is the relative closing velocity 
between the missile and target. Mathematically, this al- 
gorithm can be obtained by solving the following linear 
quadratic optimization problem [Bryson and Ho (1973)]. 
Consider the linear system given in Equation(l) with ini- 
tial conditions y(t0) = ya and vy(t0) = vyo. Suppose tF 

is fixed and we want to find the acceleration profile a(t) 
which minimizes the cost functional 

■5(<*y(tF)2 + C2Vy{tF)2) + . a{tfdt.      (12) 

Given any set of constants c\ and c? we can easily solve 
for the optimal acceleration a'(t) as a function of ci, c%, 
y(i) and vy(t). If we modify the cost function J to em- 
phasize only terminal position, i.e. we let c\ appro&eli 
infinity and let a approach zero, then a'(i) reduces to 
the proportional navigation control law. 

Proportional navigation exhibits excellent perfor- 
mance under ideal conditions. However, it does not ad- 
dress some of the implementation issues which may arise 
in a real life missile system application. For instance, in 
pro-nav guidance the desired set of normal acceleration 
commands is allowed to take on an unbounded, continu- 
ous set of values. Clearly, no hardware implementation 
can achieve infinite acceleration, so an excessively large 
acceleration commands can produce temporary satura- 
tions. Also, continuouly valued acceleration commands 
are incompatible with the increasingly common ON/OFF 
or discretely throttleable thrusters. This complication is 
often treated by implementing corrective schemes such as 
pulse-width modulation (PWM), to approximate a con- 
tinuous signal by a sequence of discrete signals. The con- 
sequences of such saturations and approximations will of 
course be reflected in degraded performance. 

Pro-nav guidance also does not address the issue of 
minimizing fuel usage under imperfect conditions. In our 
past experience, pro-nav guidance can be extremely sensi- 
tive to estimation errors which may result in an excessive 
amount of thruster activity. In simulation runs this is ev- 
ident by near simultaneous firing of a thruster in opposite 
directions, thus nearly nullifying the effect of both firings. 
This phenomenon can be alleviated somewhat by passing 



the pro-nav guidance command output through a dead- 
zone filter. The size of the 'optimal' deadzone is typically 
determined experimentally and is dependent upon other 
characteristics of the overall system. 

A Robust Guidance Algorithm 

An approach for developing a robust guidance algo- 
rithm was introduced in [Ting (1992)]. Despite its skele- 
ton development, this algorithm is presented because it 
demonstrates some of the potential performance improve- 
ments available by incorporating system integration con- 
siderations into subsystem design. The novel aspect of 
this algorithm is that its acceleration command output is 
directly affected by the magnitude of the state estimation 

The robust guidance approach consists of three main 
steps: 1) A Zero Effort Miss distance calculation, 2) A 
computed miss distance error radius R to account for fil- 
ter estimation errors and 3) A miss distance deadzone 
concept. The Zero Effort Miss distance (ZEM) is com- 
putable at any point in a missile-target engagement. It 
represents the distance by which the missile will miss the 
target assuming that the missile acceleration is zero for 
the duration of its flight. For the robust guidance algo- 
rithm concept, it is necessary to compute not only the 
ZEM but also the sensitivity of the ZEM with respect to 
the target state estimates of position, velocity and accel- 
eration. 

The main idea behind the robust guidance approach 
is embodied in the miss distance deadzone concept. This 
concept can loosely be stated as follows. Given the com- 
puted ZEM and the error radius R, if the actual ZEM 
could in fact be zero then do not change the course of the 
missile. However, if the actual ZEM cannot be zero, then 
output commands which place the missile on an intercept 
trajectory with its target. In contrast to most guidance 
algorithms which output acceleration commands, the ro- 
bust guidance algorithm outputs commands in the form 
of a velocity correction. The miss distance deadzone con- 
cept can now be restated as follows. If the magnitude 
of the computed ZEM is small then set the velocity cor- 
rection to zero. If the magnitude of the computed ZEM 
is large then set the velocity correction equal to a value 
which should correct the ZEM to zero. In this algorithm 
the boundary between large and small is governed by the 
computed miss distance error radius R. 

In this paper our robust guidance algorithm will 
only be required to output y-component velocity correc- 
tions. In this context, the miss distance deadzone concept 
can be interpreted as shown in Figure 2. Here, the val- 
ues along the horizontal zxis represent various values of 
ZEM. For instance, suppose the computed value of ZEM 
= ZEM0. If the computed miss distance error radius R 
= Ri then the y-velocity component correction is set to 
zero.   However, if the miss distance radius R = R? then 

the y-velocity component correction is set to £2£M • 

THE IMPACT OF ESTIMATION ERRORS 

To assess the relative performance of various guid- 
ance algorithms we used a two-dimensional simulated en- 
gagement between a missile and a target as described ear- 
lier and as shown in Figure 1. The initial conditions of this 
simulation were as follows. The missile and target began 
100,000 units apart in the x-direction with a relative mis- 
sile/target velocity of 10,000 units/sec in the x-direction. 
We assumed that neither the missile nor the target were 
accelerating in the x-direction and thus each simulation 
run had a fixed duration of 10 seconds. The relative y- 
displacement and velocity of the missile and target were 
specified at the beginning of each simulation run. It was 
assumed that the target had zero y-acceleration and the 
missile y-acceleration was provided by the output of the 
guidance algorithm. 

We conducted two separate types of analyses. The 
first type was called single run analysis and involved ana- 
lyzing the performance of each of the guidance algorithms 
based on miss distance and fuel consumption for the same 
engagement scenario. The second type was called initial 
condition system analysis and involved analyzing each of 
the guidance algorithms based on the set of initial en- 
gagement scenarios which were hittable given a fixed set 
of system characteristics. 

Single Run Analysis 

We ran a variety of simulations of the engagement 
described above using the fuel optimal, proportional nav- 
igation and robust guidance algorithms described-earlier. 
We shall describe our analysis for an engagement where 
the initial relative y-displacement was -3000 units and the 
initial relative y-velocity was 0 units/sec. 

We first considered the case where the estimation 
filter produced perfect state estimates. This gave us a 
chance to assess how close the pro-nav guidance and ro- 
bust guidance algorithms came to achieving the true 'op- 
timal' solution. The results of these simulation runs are 
summarized in Figures 3-4. Figure 3 shows the miss dis- 
tance performance of all three algorithms. Clearly, they 
all demonstrated acceptable performance in hitting the 
target. Figure 4 shows the total amount of thruster firing 
time for the duration of the simulation. As expected, the 
fuel optimal guidance produced the minimum amount of 
thruster firings. The robust guidance required roughly 6 
percent more thruster firings while pro-nav guidance re- 
quired roughly 11 percent more thruster firings. 

The rationale behind the variations in fuel usage is 
evident in Figures 5-7 which detail each of the three guid- 
ance algorithms output acceleration commands. The opti- 
mal fuel guidance output acceleration command is shown 
in Figure 5.   From this figure we can see that the fuel 



optimal strategy is to turn on the thrusters initially for 
as long as necessary to put the missile on an intercept 
trajectory, i.e. drive ZEM to zero, and then shut them off 
for the remainder of the run. Heuristically, this is clearly 
the fuel optimal solution because a fixed amount of ac- 
celeration change at the beginning of the run will result 
in a much larger total position change over the course of 
the run than the same amount of acceleration change ap- 
plied at a later time. From Figures 6 and 7 we can see 
that both the robust and pro-nav guidance algorithms 
produce nonzero acceleration commands throughout the 
latter stages of the run. It is interesting to note that 
in this case the robust guidance acceleration profile more 
closely matches the theoretical optimum than does the 
pro-nav guidance acceleration profile. This is especially 
true at the beginning of the run when the robusT guidance 
law maintains full acceleration for a longer time than the 
pro-nav guidance law. Consequently, the ZEM associated 
with the robust guidance law is initially reduced faster 
than the ZEM associated with the pro-nav guidance law. 
This can be seen in Figure 4. 

We next considered the case with imperfect state 
estimates. This was accomplished by corrupting each of 
the state values with random noise with zero mean and 
standard deviation equal to 5 percent of the nominal state 
value. The results of these simulation runs are summa- 
rized in Figures 8-11. As seen in Figure 8, all three guid- 
ance algorithms were still able to achieve an acceptably 
small miss distance. However, from Figure 9 we can see 
that the associated effort, i.e. thruster firings, increased 
sharply over the perfect state estimation case. The es- 
timation error caused the pro-nav guidance algorithm to 
increase thruster firings by 40 percent while the robust 
guidance algorithm increased thruster firings by 23 per- 
cent. These increased firings are clearly evident in Figures 
10 and 11 where we see persistent, near coincident, pos- 
itive and negative thruster firings throughout the latter 
stages of the run. Such firings nearly nullify each other's 
effect and the resulting small net change in the missile's 
trajectory indicate that the guidance law is overracting 
to the state estimation error. In our example, the robust 
guidance law is less sensitive to this error than the pro- 
nav guidance law, and thus its performance degrades less 
sharply. Nevertheless, by continuing to increase the mag- 
nitude of the state estimation error, we can quickly reach 
a situation where neither guidance algorithm is capable 
of hitting the target. 

Initial Condition System Analysis 

An alternative and perhaps more meaningful ap- 
proach to assessing the interrelationship between estima- 
tion filtering errors and guidance algorithm performance 
is to determine the impact of estimation errors upon the 
set of initial conditions from which the desired target is 
ultimately reachable. To demonstrate this approach, we 
considered the system given in Figure 1 and assumed a 
ten second flight time.  We assumed that the target had 

a radius of 2 units (thus we interpreted miss distances 
of 2 units or less as a hit) and assumed that the vehicle 
was equipped with enough fuel to provide six seconds of 
maximum acceleration. Within this framework we used a 
combination of analytical techniques and computer sim- 
ulations to determine, for each guidance algorithm and 
for a variety of estimation filtering error conditions, sets 
of initial conditions which resulted in a successful target 
intercept. 

The overall results of our findings are shown in Fig- 
ure 12. The area between each pair of lines represents 
the sets of initial conditions from which our vehicle caa 
reach the target in each of the following five situations: 
1) Using the fuel optimal guidance law with no state es- 
timation errors 2) Using the pro-nav guidaace4aw==with 
no state estimation errors 3) Using the robust guidance 
law with no state estimation errors 4) Using the pro-nav 
guidance law with five percent state estimation errors 5} 
Using the robust guidance law with five percent state esti- 
mation errors. Due to the large scale involved the results 
may be difficult to interpret. 

To facilitate interpretation we displayed the fourth 
quadrant of Figure 12 separately in Figure 13. For the 
associated situation, each of these lines represents the the 
boundary of the set of initial conditions from which the 
missile can hit the target. From this diagram we can 
see that even with perfect state information neither the 
pro-nav nor the robust guidance law can match the per- 
formance of the fuel optimal guidance law. For instance, 
if the vehicle and target have zero initial relative cross- 
range velocity then the fuel optimal guidance law exhibits 
a crossrange intercept capability of 4,130 units. For the 
robust guidance law and the pro-nav guidance law these 
values are 4,030 units and 4,000 units respectively. These 
"differences are relatively small with the robust guidance 
law having only 2.42 percent less crossrange position ca- 
pability given a zero initial crossrange velocity than the 
fuel optimal guidance law. The pro-nav guidance law was 
slightly worse with 3.15 percent less capability under these 
same conditions. However, it should be noted that these 
are best case results and that the crossrange intercept 
performance gaps widen as the magnitude of the initial 
crossrange velocity increases. For instance, if we assume 
that the vehicle has an initial y-velocity of -200 units/sec 
relative to the target then the fuel optimal guidance law 
exhibits a crossrange intercept capability of 2,130 units. 
For the robust guidance law and the pro-nav guidance law 
these values are 2,035 units and 2,000 units respectively. 
Thus, for this nonzero value of initial crossrange velocity 
the performance gaps have increased to 4.46 percent less 
crossrange position capability for the robust guidance law 
than the fuel optimal guidance law and 6.10 percent less 
crossrange position capability for the pro-nav guidance 
law than the fuel optimal guidance law. 

From Figure 13 it is clear that the performance of 
both the pro-nav and the robust guidance algorithm are 
both greatly affected by the presence of five percent state 



estimation errors. In this case the robust guidance law 
now has 15.25 percent less crossrange position capability 
given zero initial crossrange velocity than the fuel optimal 
guidance law. The pro-nav guidance law fares even worse 
with 24.94 percent less crossrange position capability un- 
der these same conditions. Similar to the results presented 
with no state estimation errors, these are best case results 
and the crossrange intercept performance gaps widen as 
the magnitude of the initial crossrange velocity increases. 

Comparison of Results 

timates can severely degrade guidance law performance. 
At the same time, the performance of the robust guid- 
ance law demonstrates that it may indeed be possible to 
improve upon the robust performance characteristics of 
pro-nav guidance. We feel that future progress in solving 
this problem lies with a better understanding of the inter- 
relationship between the state estimator and the guidance 
algorithm. This area is currently under further research. 
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ABSTRACT Figure 1: Typical Missile Divert Control System 

In this p»P«r we consider the problem of exoat- 
mospherk missile/target engagemenU with imperfect 
state information. We present a newly developed robust 
guidance algorithm which schieres better hit performance 
and less fuel consumption than a proportional naviga- 
tion (pro-nav) guidance algorithm for certain engagement 
scenarios. These preliminary results lead us to believe 
that robust guidance algorithms can eventually be derel- 
oped which will globally outperform existing guidance at 
gorithms in dealing with uncertainties. 

INTRODUCTION 

This paper describes the preliminary develop- 
ment of a robust guidance algorithm for use in exoat- 
mospheric missile/target engagement problems. The pri- 
mary motivation for our guidance research was twofold. 
First, we wanted to develop an algorithm which was 
straightforward to implement; i.e. a mTmniurn of ad- 
hoc fixes and dependence on designer sk3L Second, we 
wanted to improve upon the performance of a popular 
existing algorithm, the proportional navigation (pro-nav) 
guidance algorithm, both in terms of fuel consumption 
and hit probabilities. Much of this effort was directed to- 
wards improving upon the robustness of pro-nav guidance 
algorithms, that is improving the performancein the face 
of uncertainties. In our particular study theietmoÄain- 
ties were characterised by errors in the state estimates 
used by the guidance algorithms. 

BACKGROUND AND MOTIVATION 

The linear and rotational motions of a exoatmo- 
spheric missile are typically controlled by firing thrusters. 
The most elementary thrusters possess an ON/OFF char- 
acteristic. More complicated thrusters are throttleable, 
featuring a variable thrust level The attitude and di- 
vert control thrusters are often subdivided into separate 
groups with each group of thrusters controlled by separate 
attitude and divert control systems. These systems are re- 
sponsible for processing feedback information about the 
cunent states of the missile relative to its desired target 

and f««™-"g appropriate firing commands. For guidance 
purposes, the divert control system ii crucial because it' 
is responsible for controlling the non-rotational motion of 
the missile. 

A block diagram of a typical missile divert control 
■ystem is shown in Figure 1, and its operation can be 
tummarised as follows. At the beginning of each guid- 
ance cycle, values of the angular rates of the vehicle and 
filter estimates of the missile's linear position, velocity 
and acceleration relative to the target model are fed back 
into a guidance, algorithm. This algorithm processes this 
information and generates a vector of desired linear accel- 
eration commands. These linear acceleration commands 
are then transformed into individual divert thruster com- 
mands which are applied to each of the divert thrusters. 

If we employ a standard pro-nav guidance algorithm 
then the divert control system design is complicated by 
the presence of ON/OFF divert control thrusters. Pro- 
nav guidance algorithms are usually allowed to output 
a continuous valued vector of linear acceleration com- 
mands. This results in a continuous set of divert thruster 
commands which are incompatible with ON/OFF divert 
thrusters. This complication may be addressed by im- 
plementing a scheme, such as pulse-width modulation 
(PWM), which converts a continuous valued input vec- 
tor of divert thruster commands mto an ON/QFF.valnied . 
output vector of divert thruster commands.       

Proportional navigation guidance also does not ad- 
dress the issue of minimising divert thruster firings. In 
our past experiences pro-nav guidance has on occasion 
exhibited an excessive amount of divert thruster firing 
activity. This phenomenon can be treated by appending 
a deadsone filter to the divert control system. Such filters 
process the guidance algorithm's output vector of linear 
acceleration commands prior to their transformation into 
individual divert thruster commands. The sise of the 'op- 
timal' deadsone is typically determined experimentally. 
Although this solution generally produces satisfactory re- 
sults, we are not satisfied with the absence of a formal 
design procedure for determining the sise of the deadsone. 

Our objective in this paper is to describe the prelim- 
inary development of a robust guidance algorithm which 
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accomplishes four main goals in companion with a pro- 
nav guidance scheme. First, it produces discrete rained 
linear acceleration commands which are completely com- 
patible with ON/OFF divert thrusters. Second, it aroids 
the use of deadsones or determines them in an analytic 
fashion. Third, it improves hit performance by making 
the terminal miss distance more robust to filter estimation 
errors. Finally, it reduces orerall divert fuel consumption. 

A PROPOSED NEW ROBUST GUIDANCE 
ALGORITHM 

Main Ideas 

We shall first explain the basic principles behind our 
guidance algorithm. The technical details will be illus- 
trated using a generic two dimensional guidance problem 
later in this section. 

The development of our guidance algorithm consists 
of three main steps; 1) A miss distance calculation 2) A 
miss distance radius due to filter estimate errors and 3) 
A miss distance deadsone concept. At any point in a 
missile/target simulated engagement we can compute the 
Zero Effort Miss distance, ZEM. This represents the dis- 
tance by which the missile wQl miss the target assuming 
that the "'«"I* acceleration is sero, that is no external 
effort (force) is acting upon the missile, for the duration 
of its flight. For our guidance algorithm, we are inter- 
ested in not only the Talue of ZEM, but also of the sensi- 
tivity of ZEM with respect to our state estimates of the 
relative H«»»T components of acceleration, velocity and 
displacement. These sensitivities are useful because they 
represent the incremental change in ZEM which will ac- 
company a unit incremental change in each state. 

As stated earlier, one of our foremost design objec- 
tives is robustness to state estimation errors. Thus, in 
addition to computing a single miss distance value ZEM, 
we compute a miss distance radius R due to possible state 
estimation error*. This radius R is computed as follows. 
First, we determine a maximum magnitude filtering error 
bound for each of the relative acceleration, velocity and 
displacement states. Then, using the sensitivities of ZEM 
with respect to these states, we compute the maximum 
magnitude error in ZEM associated with the current val- 
ues of the states. This maximum magnitude error is the 
miss distance radius R. 

The miss distance deadsone concept is very simple. 
It determines the output of the guidance algorithm in the 
form of a velocity correction. If the absolute value of the 
computed miss distance ZEM is sufficiently small then the 
velocity correction is set to sero. However, if the absolute 
value of ZEM is large then a velocity correction is issued 

ZEMr 
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Figure 2: Miss Distance Deadsone Concept 

which should correct the ZEM to sero. In our algorithm 
the boundary between large and small is given by the mist 
distance radius R If the absolute value of ZEM is smaller 
than R then the guidance algorithm outputs a velocity 
correction of sero. However, if the absolute value of ZEM 
is greater than R then the guidance algorithm outputs 
a velocity correction which should correct the ZEM to 
sero. Analytically, this is done by outputting a velocity 
correction which is equal to the current ZEM divided by 
the sensitivity of the ZEM with respect to the velocity 
state variable under consideration. 

In this paper we restrict our attention to outputting 
only y-component velocity corrections. In this context, 
the miss distance deadsone concept can be interpreted 
as shown in Figure 2. Here, the values along the hori- 
sontal axis represent various values of ZEM. Suppose the 
computed value of ZEM is given by ZEM». If the miss 
distance radius R is given by Ri then the y-velocity com- 
ponent correction is set to sero. However, if the miss 
distance radius R is given by Rj then the y-velocity com- 
ponent correction is set to ■///£. 

Algorithm Details 

We will now illustrate the details of our guidance al- 
gorithm using the generic two dimensional guidance prob- 
lem shown in Figure 3. Here, the target and the missile 
are represented by point mass models where the target 
is denoted by the letter T and the missile is denoted by 
the letter M. The-relative positions of the missile and tar- 
get are represented with respect to a xy-coordinate frame 
whose origin is always coincident with the location of the 
target. In this coordinate frame the target has sero veloc- 
ity and acceleration and is always located at the origin. 
Conversely, the missile always begins with a negative x- 
component and is represented by a relative distance from 
the target (origin). The missile is also moving relative to 
the target (origin) with some velocity and acceleration. 
To further simplify our problem, we assumed no gravity 
effects (Le. an exoatmospheric engagement) and that the 
target maintained a constant acceleration. 

Our guidance algorithm begins with a computation 
of the Zero Effort Miss. This miss distance can be de- 
fined in several different ways. For our two dimensional 
problem we chose to define the ZEM as the distance be- 
tween the target and the missile when the target crosses 
the line x=0 (i.e. the y-component of the trajectory when 
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Figure 3: Two Dimensional Guidance Problem 

it crosses the y-axis). 

At any time t. let us denote the values of 
the relatiTe z and y component» of acceleration«, ve- 
locitie« and diatances of the missile and target by 
a.«,»».,»..,«»..«, and f». Then assuming constant tar- 
get accelerations and sero missile accelerations, the future 
Talues of relative x and y components of accelerations, 
Telocities and distances of the missile and target at any 
future time f . + *I are given by 

a.(t.-Mi) = «»• 

a,(*. + »i) = «T. 

(1) 

(2) 

*». = V*fe~ 
2s. 

2J5.»/ = y(»,.) = y.+ «,.*,.+ .5o,.*J0. (10) 

In addition to the miss distance ZEM we are also 
interested in computing the sensitivities of ZEM with re- 
spect to the relative x and y components of acceleration, 
Telocity and displacement. Using equations 8-10 these 
sensitivities can be computed in a straightforward fash- 
ion to yield 
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From these expressions we may compute the time 
to go if.. This represents the length of time before the 
missile - crosses the y-axis. Atany timer.ti this value is 
given by solving the equation 

s(t. +1,.) = *. + «..*,. + -B«.at5. = 0       (7) 

for tf,. Two separate cases exist. If a*. > 0, that is if the 
target is accelerating towards the missile, then 

Let us denote our six state estimates by 
e,y,v.,tfy,a^ and &,. We must first determine the mag- 
nitude of possible estimation errors associated with each 
of these six state variables. We denote these error magni- 
tudes by As,Ay, A«s, A«y, Aa. and Aa,. In a true de- 
sign problem these values could be determined iteratively 
by beginning with initial guesses with future updating 
baaed on actual simulation results. For our problem we 
simply set the magnitude of each estimation error equal 
to a fixed percentage of the corresponding state estimate. 

From the state estimation error bound magnitudes 
and the sensitivities given in Equations 11-16, the miss 
distance radius R may be computed as 
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Alternatively, if a». < 0, that is if the target is accelerat- 
ing away from the missile, then 

(17) 
R represents the maximum possible uncertainty in the 
magnitude of the ZEM due to state estimation errors. 

The output of our guidance algorithm is an incre- 
mental velocity change command, 6vv. As stated earlier, 
we use a very elementary miss distance deadzone concept. 
If the computed miss distance is less than R, then Svt is 
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■et to lero.  If not, then 6v, is commanded such that it 
conecti the next computed mi« distance to lexo. 
ematically, this is expressed as 

f        Oif 
Sv-   =   <       I'M 

II ZEM ||< 
if || ZEM \ 

R 
l>R ) 

Math- 

CIS) 

A major difference between our guidance algorithm 
and pro-nay guidance is the form of the commanded out- 
put. Pro-nav guidance algorithms usually output linear 
acceleration commands. Our guidance algorithm ouputs 
linear Telocity incremental change command». That is, 
instead of commanding acceleration in each linear direc- 
tion, our guidance algorithm issues desired incremental 
Telocity changes in each linear direction. 

As described earlier, pro-naT guidance outputs are 
often passed through deadsone niters which sero out all 
input which fall below a specified threshold. In contrast to 
previous ad-hoc methods, our guidance algorithm was de- 
signed with an automated procedure to handle the selec- 
tion of an appropriate deadsone threshold. This thresh- 
old was selected such that our guidance algorithm output 
incremental Telocity commands which were entirely com- 
patible with ON/OFF thruster characteristics. This pro- 
cedure operated as follows. Given the mass of the missile 
and the guidance cycle rate we could compute the maxi- 
mum linear Telocity change, Atwi achierable during a 
«™E1«. guidance cycle. This Talue was then selected to be 
the threshold of our Telodty deadsone filter. Thus, our 
true guidance algorithm output is computed as follows: 

Sty   =   I 
Oif 

A» 

Sv, D< A«m» 
if Svj > AtM 

if Svf < — A»* }■ 
(19) 

TWSMSHr.1 

Figure 4: Block Diagram of Our New Guidance Al- 

gorithm 

that the ""«« distance deadsone is shutoff when t,o — 1 
second, we want ZEM to be small enough such that it can 
be reduced to sero in one second or less. The maximum 
ZEM correction achieTable in time t is given by 

AZEM = .5maz(arrKi..a. - a,.)*'- (20) 

In our example AZEM was approximately 304s. Thus, 
we want the ZEM to be less than 30 when t,o = 1 second. 
Consequently, we set the upper bound on R to be 30i#o. 

The lower bound on R was not computed analyti- 
cally. We simply experimented with Tarious gains unitl 
we found one we deemed satisfactory. For our example 
we settled on a lower bound of 10tf». 

A block diagram illustrating the full computations 
of our new guidance algorithm is shown in Figure 4. 

SIMULATION RESULTS 

After preliminary testing with our guidance algo- 
rithm some additional features were added to enhance 
performance. First, the miss distance deadsone was shut- 
off for the last second of the engagement. Whenerer t,. 
was one second or less the Telocity correction was com- 
puted according to the second expression of Equation 18 
without regard to the inequality conditions. Second, the 
miss distance radius R given by Equation 17 was sub- 
ject to upper and lower bounds. The upper bound was 
appended because we wanted to ensure that when tt» 
reached one second, ZEM was sufficiently small so that 
the missile could successfully intercept the target. The 
lower bound was appended to ensure that R did not be- 
come too small too quickly which could result in a ZEM 
response which oscillates about sero. 

The upper and lower bounds on R were set equal to 
a constant multiple of *,.. The gain on the upper bound 
was determined by the relative acceleration capabilities of 
the missile and the target.  For instance, since we know 

We applied our new guidance algorithm to a two- 
dimensional simulated engagement between a missile and 
a target. The initial conditions of this simulation are 
characterised as follows. First, the missile and target be- 
gan 200,000 units apart in the x-direction and 2,000 units 
apart in the y-direction. Second, the missile began with 
an initial relative dosing Telocity of 20,000 units/sec in 
the x-direction and 400 units/sec in the y-direction. Fi- 
nally, the missile began with an initial relative accelera- 
tion of 50 units/sec* in the x-direction and -30 units/sec3 

in the y-direction. The initial relative acceleration in the 
y-direction was derived from the fact that the target was 
assumed to have a constant acceleration of 30 units/sec3 

in the y-direction while the missile was given sero initial 
acceleration in this direction. 

We ran simulations of the engagement described 
above using three different guidance algorithms. These 
algorithms were standard proportional navigation, stan- 
dard proportional navigation with a deadsone filter, and 
an algorithm based on our new guidance scheme described 
earlier. The sise of the deadsone augmenting the standard 

2383 

mmm 



proportional navigation algorithm was »elected by trial 
and error in an attempt to achieve a compromise between 
good nit performance and minimal divert fuel usage. 

The different guidance algorithms were compared on 
their ability to perform in the »cenario described above. 
Performance was characterised, by two main factors: ter- 
minal miss distance and divert thruster ontime. These 
measures were chosen because they address two main 
questions regarding any missile engagement: 1) Did the 
r,;^gr hit the target? and 2) How much fuel do we need 
to put in the missile so that it can hit the target? 

For comparison purposes we conducted two sets of 
simulation run*. The first set of runs were conducted as- 
suming no state estimation errors. The second set of runs 
were conducted assuming * ten percent estimation error 
in the relative x-distance between the missile and target. 
We could have conducted simulation runs assuming es- 
timation errors in more than one state, but we felt that 
the two sets of runs described above were sufficient to 
illustrate our result«. 

The results of the first set of simulation runs (each of 
the three guidance schemes run separately with no state 
estimation errors) are shown in Figure 6. The simulation 
results obtained using a proportional navigation guidance 
algorithm are shown by the solid black lines. By append- 
ing a deadsone to the proportional navigation algorithm 
we obtained the simulation results shown by the small 
dotted lines. Finally, the simulation results obtained us- 
ing the guidance algorithm described in this paper are 
shown by the medium dotted fines. 

It is clear that with no state estimation errors, all 
three guidance algorithms achiere comparable miss dis- 
tance performance. In fact, the pro-nar guidance and the 
pro-nav guidance with the added deadsone achiere nearly 
identical miss distances. Our guidance algorithm results 
in a slightly larger terminal miss distance, but this dif- 
ference is almost negligible when compared to the sise of 
most targets. 

Conversely, the three guidance schemes differ g«»ü7 
in the amount of divert thruster ontime. This is signifi- 
cant because with ON/OFF divert thrusters the amount 
of divert thruster fuel consumed is directly proportional 
to the amount of thruster ontime. Since additional fuel 
increases the weight of the missile which must be carried 
into space, it is desirable to minimise the fuel require- 
ments of the missile. 

From Figure 6 it is evident that the pro-nar guidance 
algorithm results in the largest dirert thruster ontime (di- 
rert fuel consumption). This value is reduced (in our ex- 
ample) by approximately fifteen percent by appending a 
deadsone to the pro-nar guidance algorithm. However, 
by implementing the our guidance algorithm it is possible 

Figure 5: Simulation Results With No State Eatim». 
tion Errors 

to reduce dirert thruster ontime by more than fifty-five 
percent as compared to a standard pro-nar guidance al- 
gorithm. Thus, in this case our guidance algorithm eaa 
greatly reduce the amount of dirert thruster activity witk 
a very minimal impact upon miss distance performanee. 
In fact, this inpact is so small that it probably would not 
change the likelihood of hitting a target. 

The results of the second set of simulation runs (each 
of the three guidance schemes run separately with a ten 
percent state estimation error in the relative x-distance 
between the missile and target) are shown in Figure 6. 
The results corresponding to the three different guidance 
algorithms are indicated by the same type of lines de- 
scribed for Figure 5. 

In this »r«TTiplf the pro-nav guidance algorithm and 
the pro-nav guidance with the appended deadsone again 
achieve nearly identical miss distance performance. Un- 
fortunately, both guidance algorithms result in a rela- 
tively large terminal miss distance. The deterioration 
in ™U« distance performance as compared to the simu- 
lation with no state estimation errors indicates that nei- 
ther of these two algorithms is particularly robust to state 
estimation errors. By contrast, our guidance algorithm 
achieves very good miss distance performance in spite of 
this state estimation error. A comparison of Figures S and 
6 indicates that the terminal miss distance performance 

2384 

mmmmmmmm 



DlvwR tbnMCtr »tu 

■ 
i 

i 
i 

T 
i 

i 
i 

i 

1  
 J 

  
i 

»   fttM — ■ 1—If 

/    4 

•              t 1 I 

Figure 6:  Simulation Results With Ten Percent X- 
State Estimation Errori 

of our guidance algorithm deteriorates very Ettle in the 
pretence of this state estimation error. 

It is also seen that the presence of the state esti- 
mation did not affect the relative fuel consumption char- 
acteristic of the three guidance schemes. The pro-nav 
guidance algorithm again required the largest fuel con- 
sumption, fallowed by the pro-nay guidance with the ap- 
pended deadsone and finally our new guidance algorithm. 
As before, appending the deadsone to the pro-nay guid- 
ance algorithm reduced divert thruster ontime by roughly 
fifteen percent, while our new guidance algorithm reduced 
divert thruster ontime to roughly one half of the value as- 
sociated with the pro-nav guidance algorithm. However, 
in this case the new guidance algorithm not only achieved 
greatly reduced fuel consumption in comparison with pro- 
nav guidance, but also achieved a significant advantage in 
terminal miss distance performance. 

In the transition from the perfect information case 
to the case with state estimation error, we note that the 
fuel consumption associated with all three guidance algo- 
rithms increased. This is expected because the presence 
of state estimation errors leads to erroneous thruster com- 
mands and subsequent thruster firings. In such situations, 
fuel is wasted not only on these erroneous firings them- 
selves, but in the firings which must be made to correct 
the harmful effects caused by the erroneous firings.  We 

expect that on average as the magnitude of the state es- 
timation errors increase, the percentage increase in fuel 
consumption over the perfect information case will also 
increase. 

CONCLUSIONS AND RECOMMENDATIONS 

We have explored some new ideas for developing 
a robust guidance algorithm. These ideas were incorpo- 
rated into a first cut version of a new guidance algorithm. 
This algorithm performed favorably in a simulated mis- 
sile/target engagement in comparison with two versions 
of standard pro-nav guidance. However, we must cau- 
tion that these results are engagement dependent and fa- 
vorable results are not always obtained. In addition, at 
though we were able to avert a majority of the ad-hoc pro- 
cedures and ON/OFF thruster complications associated 
with the pro-nav guidance algorithm, we were not able 
to remove all of the ad-hoc procedures from our guidance 
algorithm design, i.e. the selection of the lower bound on 
B- Further research is needed to better understand the 
full benefits and drawbacks of our ideas. It is our hope 
that this paper may help to focus attention on this prob- 
lem and stimulate research into the development of more 
robust guidance algorithms. 

ACKNOWLEDGEMENTS 

The author wishes to thank Dr. James Krause 
of Honeywell SRC for his technical consultation. This 
work was conducted under Honeywell SRC internal re- 
search and development funding. 

REFERENCE 

Zarchan,   P.,  "Tactical  and  Strategic Missile 
Guidance,* Washington D.C., AIAA, 1990. 

2385 

L- SMS» 



V\3   CPC 

Fault Detection in the Presence of Modeling 
Uncertainty * 

Pramod P. Khargonekar t    and Thomas L. Ting § 

ABSTRACT 

In this paper we describe a new approach for de- 
tecting faults in systems in the presence of modeling un- 
certainty. Our approach is interactive and relies on pro- 
cessing true time domain system measurement data to 
determine whether or not the system is operating within 
an expected range of behaviors. Our results are appli- 
cable to either open or closed loop systems and can be 
implemented in a numerically efficient fashion. 

INTRODUCTION 

As today's state-of-the-art control systems (i.e. mil- 
itary, aerospace, chemical processes etc.) become increas- 
ingly complex the problem of fault detection is gaining in 
importance. For many of these systems the presence of a 
single undetected fault can lead to greatly reduced perfor- 
mance or worse yet a catastrophic failure. Fault detection 
algorithms attempt to determine when a system is oper- 
ating outside of its range of expected behaviors. Once a 
fault is detected various means exist to isolate the fault 
and allow the system to operate at a suboptimal level. 
Some control designs are sophisticated enough to achieve 
optimal reconfiguration in the presence of a fault. 

Modeling uncertainty and noise inputs both compli- 
cate the problem of fault detection. For example, suppose 
a control engineer possessed a perfectly accurate math- 
ematical model of a system and suppose all the inputs 
could be measured. Then the fault detection problem 
may be solved through the following basic principle. If 
the measured relationship between any two signals within 
the system does riot agree with the relationship predicted 
by the model then there must exist a fault in the system. 

"Now suppose this same control engineer has a sys- 
tem with either some unmeasurable noise inputs and/or 
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some level of modeling uncertainty. Due to the presence of 
these uncertainties, it is clear that the principle described 
above is no longer directly applicable to this problem. 
In this case the job facing the fault detection algorithm 
can be broken into two steps. First, it must determine 
whether a discrepancy exists between the measured rela- 
tionship between any two signals within the system and 
the expected relationship predicted by the model. Sec- 
ond, if a discrepancy does exist then it must determine 
whether this information is truly indicative of a fault in 
the system, or is simply the result of noise or modeling un- 
certainty. Traditionally, fault detection algorithms have 
been analyzed in a probablilistic setting to account for 
random noise [2,3,4,6,10]. This probabilistic approach is, 
however, difficult to use in the presence of unmodeled dy- 
namics which is typically described in a deterministic set- 
ting. Recently, fault detection problems in the presence 
of unmodeled dynamics have been investigated [1,7,8,9]. 

In this paper we investigate a fault detection prob- 
lem featuring significant modeling uncertainty due to un- 
modeled dynamics. A typical example is unmodeled high 
frequency dynamics. We develop a fault detection algo- 
rithm that accounts for these unmodeled dynamics. Our 
approach is closely related to the recent work on robust 
identification as well as model validation [5,7]. 

MATHEMATICAL PRELIMINARIES 

There exist a variety of mathematical concepts to 
characterize the time and frequency domain behavior of 
plants and their associated input/output signals. In this 
section we briefly review those concepts which are perti- 
nent to our discussion. 

Signal and Operator Norms 

Let £2" be the set of all square integrable functions 
from [0,oo) to K" 

£? = {«(*) :   /     uT{t)u{t)dt < 00}. (1) 
Jo 

For all signals u(t) in this set we may define the £2 norm 

\\«h = Jj   *T(tMt)dt. (2) 



This norm can be interpreted as the "energy" in the signal 
u(t). For a square integrable function u from (0, T) to Hn, 
define the partial £2 norm as 

|,(0.T) -u- T{t)u(t)dt. (3) 

This norm represents the "energy" in the signal u(t) over 
the time interval (0,T). To emphasize the most recent 
signal information define a weighted partial £2 norm as 

ll£T) -If: e«'-T)uT{t)u(t)dt. (4) 

In this weighted norm all the past values of« are weighted 
by a factor which decays exponentially as a function of 
time. This limits the ability of accumulated past signal 
values to dilute the effects of new information. The rate 
of decay is controlled by the selection of the constant <r. 

Modeling Uncertainty 

Mathematical models are an attempt to analytically 
represent the behavior of a true physical system. Control 
designers rely heavily on such models in designing mod- 
ern, high performance controllers. In reality, however, 
true physical systems are never perfectly represented by 
a mathematical model. Thus, it is important for a con- 
trol engineer to design controllers which provide not only 
good nominal performance but are also robust, i.e. which 
perform well in spite of plant uncertainties. 

One popular approach to synthesizing robust con- 
trollers is to build uncertainty into the plant model. In 
such cases, the plant is not represented by a single nom- 
inal plant model, Po(s), but is instead allowed to be any 
element in a family of plant models. One typical family 
of plant models is given by 

T={{I + AW(s))P0(s) : HAilco < Smax)        (5) 

where P0(s) is the nominal plant model, A represents an 
unknown, linear, time-invariant, stable, proper, rational, 
norm-bounded perturbation, and W(s) is a frequency de- 
pendent weighting function which characterizes the rel- 
ative magnitude of modeling uncertainty at various fre- 
quencies. Typically, W(s) takes on larger values at higher 
frequencies reflecting the inability to model accurately at 
these frequencies. Here the bound, 6mal, on A is the £2- 
induced operator norm which represents the maximum 
amount of modeling uncertainty associated with T. 

A KEY BOUND 

In this section we describe a key time-domain bound 
which forms the basis of our fault detection algorithm. 
Consider the generic system shown in Figure 1. Here, the 
input signal u and the output signal y are related by the 
transfer function A(s) through the expression y = A(s)u. 

Suppose that the magnitude portion of the fre- 
quency response of A(s) has a frequency weighted bound. 

In other words, suppose there exists a nonnegative real 
function S(u) such that UA^'w)!^ < 8(u) for all frequen- 
cies w. Moreover, suppose that S(u) is such that there 
exists a rational, minimum phase, proper, stable func- 
tion W(s) such that |W(j'u>)| = 6(u) for all frequencies 
u. Then the system shown in Figure 1 can be redrawn as 
shown in Figure 2 with A = AW where ||A||oo < 1. 

Since || Ä ||e»< 1 then by definition 

(6) 

for any arbitrary time t. This inequality can be inter- 
preted as follows. For any time t the energy of the output 
of A over the interval (0, t) is smaller than the energy of 
the input of A over this same interval. 

More generally, suppose two signals v and y are re- 
lated by a causal operator A such that ||A|| < 1 where 
the norm on A is the £2induced norm. Then it is easy to 
see that 

»ll?°'°<ll l|2(0,t) 
112 (?) 

holds. Indeed, it has been shown in [7] that if A is allowed 
to be linear time-varying, then this is a tight bound. 

In real time fault detection algorithms, it is desirable 
to discount past information. For instance, suppose A(J) 

is a linear, time-invariant, proper, rational, stable func- 
tion with no poles in Re(s) > —a. Moreover, suppose 

||A||„ :=     sup 
Rc(s)>- 

<Wr(A(s)) < 1. (8) 

Then it is possible to show using the weighted partial 
norm that 

for any arbitrary time t. 

(9) 

To facilitate implementation of either Equation (??) 
or (??) in real-time fault detection algorithms, it is im- 
perative to minimize computational and memory storage 
requirements associated with finding the upper bounds. 
For Equation (??) this is accomplished by defining 

V(t) =|| „(r) || 
Jo 

,<r(t-T) v(T)Tv(r)dr.       (10) 

Here V^t) is a monotonically increasing function of t and 
its derivative is given by 

^(r) = -,V(r) + «(r)>). (11) 

Now V'(t-)-At) can be updated recursively by nu- 
merically integrating Equation (??). This computation 
requires only the most recent measurement value v(t), the 
most recent computed value of V(t), the timestep Ai, and 
the constant a. In addition to computational simplicity 
this approach reduces memory requirements by eliminat- 
ing the need to store all values of past measurements from 
time zero to the present. The upper bound for Equation 
(??) can be obtained by following a similar procedure. 



FAULT DETECTION ALGORITHM 

In this section we use the key bound described in the 
previous section to develop our fault detection algorithm. 
We first describe the general ideas behind our algorithm 
and outline their implementation. Next, we address more 
specific algorithm implementation issues such as select- 
ing an appropriate fault detection threshold to account 
for noise, modeling uncertainty and the tradeoff between 
various error probabilities. 

Algorithm Outline 

We describe our algorithm in the context of a typi- 
cal open loop system as shown in Figure 3. This system 
contains a plant P, featuring multiplicative modeling un- 
certainty, which is allowed to be any member of a family 
of plants T described by Equation (??). For simplicity 
we selected a weighting function W(s) such that 6mol is 
normalized to one. In addition to modeling uncertainty, 
the plant P also features an additive failure input signal 
/. This signal is zero under normal plant operations and 
is nonzero when the plant is operating in a failed state. 
Each possible failure of the plant is associated with a dif- 
ferent failure signal /. For example, if a system is subject 
to three different types of failures, then there would be 
three different failure input signals /i,/a, and fz. The 
characteristics of each / are intended to replicate the im- 
pact an associated failure would have on the plant. It is 
assumed that the plant operator has complete knowledge 
of all possible failure signals, but does not know which, if 
any, signals are present at any given time. 

The open loop system features a plant output mea- 
surement y corrupted by additive measurement noise n. 
Although individual values of n are unknown, we assume 
that certain properties of n are known. For instance, n 
may be represented by a stochastic noise model such as 
a Gaussian distribution with zero mean and a fixed stan- 
dard deviation. Alternatively, n could be represented by 
a deterministic noise model. Here, n would not be de- 
scribed through probability distributions but would in- 
stead be restricted by deterministic constraints, such as 
weighted £2 or £«, norms. 

The central idea of our fault detection algorithm is 
to use available signal measurements to analytically re- 
construct the input and output signals to the .uncertainty 
block A. This signal set is then examined using the key 
bound from Equation (??) to determine whether or not 
it complies with the apriori modeling assumptions on the 
size of A. In particular, we check to ensure that the mea- 
surement data could indeed have been generated by a per- 
turbation of size Smax or less. With 6mol normalized to 
1 our fault detection algorithm basically checks whether 
or not the output signal, doul, of A has more or less en- 
ergy than the input signal </,-„. If 6max were not nor- 
malized then our fault detection algorithm could simply 
check whether or not dout has more or less energy than 
Smax times d,„. 

From Figure 3, din = WP0r. This signal is con- 
structable because the reference signal r and the trans- 
fer functions W(s) and PQ(s) are all known. Constructing 
d„ut is slightly more complicated. From Figure 3 we know 
that the plant output measurement y is given by 

y = P0r + &WP0r + f + n. (12) 

Now define dout  = AWP0r. Since / and n are unkno^ 
we approximate dout as 

d„ut « y - P0r = dout + / + n. (13) 

Assume that the noise signal n is zero. Then using 
the signals described above we can detect the presence of 
a fault by computing whether 

y-P°r\\l™ - II WP0 \$°A< 0 = L,hr..h.     (14) 

If this inequality holds then d;„ has more energy than d^i 
in the time interval [0, t]. This result is consistent with 
an uncertainty block A of norm less than or equal to one, 
and thus the fault detection algorithm concludes that no 
fault is present. Conversely, if this inequality does not 
hold then by analogous reasoning this result is inconsis- 
tent with our modeling assumptions and the fault detec- 
tion algorithm concludes that a fault must be present. 

Operationally, this fault detection algorithm is im- 
plemented in three steps. First, any desired r is input to 
the true physical system and the resulting y is recorded. 
Second, knowledge about r, P0, and W, is used to ana- 
lytically compute P0r and WP0T. Third, the two norms 
in Equation (??) are obtained recursively by numerically 
integrating Equation (??). 

A convenient method of checking the inequality in 
Equation (??) is to display the difference 

\\y-P0r\\l^-\\WP0rC* (15) 

graphically as a function of time. By comparing this value 
versus Lthrch we can easily see whether or not a fault 
exists. 

Thus far we have discussed our fault detection algo- 
rithm only in the context of open loop systems. However, 
the same results are directly applicable to closed loop sys- 
tems, as shown in Figure 4, provided that the control 
input u is measurable. If this condition holds then the 
identical algorithm is applicable to closed loop systems 
with the sole modification that the reference signal r is 
replaced by the control input u. Thus, for the closed loop 
system fault detection algorithm the input and output 
signals associated with A are given by di„ = WP0u and 
dout = AWPgU « y — P0u. All other aspects of the algo- 
rithm remain unchanged. For the remainder of this paper 
we will continue to discuss our fault detection algorithm 
in the context of open loop systems noting that all results 
are also applicable to closed loop systems. 

In applications we recommend using the weighted 
partial £2-norm instead of the standard partial £2-norm. 

k 



This substitution is allowable because for any plant P in 
the family T, described by Equation (??), A is a stable 
perturbation which implies that there exists some positive 
a such that A(J) has no poles in Re(s) > — a. 

Without the inclusion of the exponential forgetting 
factor in the partial £2-norm, it is possible that a long 
initial period of no fault performance could dilute the 
ability of a fault associated transient to suddenly alter 
the difference || y - P0T ||*

(CM1
 - || WPar |#°A

 . With 
the exponential forgetting factor present, the most recent 
data values are emphasized and this risk is lessened. 

Threshold Selection 

In reality, the threshold, Lthrcsh (currently zero), 
on the right hand side of Equation (??), is too stringent 
for practical applications. This value was derived under 
the assumption that n is zero. Clearly, the presence of a 
nonzero n will alter the energy in y, and hence the en- 
ergy of the computed dout, commensurate with the noise 
characteristics. To compensate, Lthrcsh must be raised, 
with its ultimate selection dependent on the specific per- 
formance requirements of the fault detection algorithm. 

Fault detection algorithms are subject to two types 
of errors: a False Alarm or a Missed Fault. A False 
Alarm (FA) is an error which occurs when there is no 
fault present in the system but the fault detection algo- 
rithm mistakenly signals the presence of a fault. A Missed 
Fault (MF) is an error which occurs when there is a fault 
present in the system but it is not detected by the fault 
detection algorithm. In our case, as is true with almost 
all fault detection algorithms, the probability of either of 
these errors is directly related to the value of Lthrcsh- We 
would ideally like to simultaneously minimize both the 
probability of a MF, (p(MF)), and the probability of a 
FA, (p(FA)). However, such a minimization is impossi- 
ble because as the value of Lthrcsh varies, there exists an 
inherent tradeoff between p(MF) and p(FA). 

No standard procedures exist to compare the rela- 
tive importance of MF's versus FA's. In fact, their rel- 
ative importance must be individually assessed for each 
application. One can easily envision different scenarios 
where MF's range from being critically important to op- 
erationally acceptable. Indeed, unless a MF were truly 
critical we certainly would not want to set Lthrcsh so low 
that we are continually shutting down the system in re- 
sponse to a slew of FA errors. 

Regardless of the choice of Lthrcsh our fault detec- 
tion algorithm will be unable to discern the difference be- 
tween / and n. Thus, to completely eliminate the possibil- 
ity of FA's our fault detection algorithm requires setting 
Xthre.h = 2||n||2<,||<fm||2.7 + \W\\la. This value is obtained 
by computing the maximum energy difference achievable 
between dout and di„ given a noise input of energy ||n||2<r- 

Conversely, completely eliminating the possibility of 
MF's requires setting Lthrcsh to a negative number. From 

Equation (14) such a value is intuitively unsettling be- 
cause it requires that dout have a prespecified amount of 
energy less than din in order for a fault not to be declared. 

In reality the actual value of Lthrcsh will lie between 
these two extremes. For an arbitrary value of Lthrcsh, we 
would like to compute the minimum size of a fault / to 
assure detection by our algorithm. After some algebraic 
computations we find that all faults / such that 

ll/lla« > ||n||3, + ||<i..t||2, + s/Lthr*.h + ||*»||L- (16) 

are detectable by our fault detection algorithm. From this 
equation it is clear that there are three key factors influ- 
encing the detectability of various faults: 1) the energy 
levels of the signals di„ and dout, 2) the energy levels of 
/ and n and 3) the value of the threshold Lthrcsh. 

We can interpret the results of Equation (16) 
through a simple example. Suppose we have a case where 
both ||<fm|| and ||<ioue|| are zero in steady state. Also, sup- 
pose the two signals / and n have the same energy levels 
and Lthrcsh is any nonzero number. Then it is conceiv- 
able (although unlikely) that n could completely cancel 
the signal / and it would appear as if no fault is present. 
In fact, to mask the presence of an existing fault, n need 
not completely cancel /, but it must only make it appear 
as if the combined signal (n + /) has less energy than 
Lthresh- Therefore, to guarantee that a failure can be 
detected, the associated failure signal / must satisfy 

11/11* »a« + y/Lt (17) 

From this equation it is clear that as either the energy 
level of n rises or Lthrcsh rises the energy requirements 
of / to assure detection increases. This does not mean 
that failure signals with less energy will not be detected. 
However, it does mean that the probability of detecting a 
fault associated with a fixed energy failure signal decreases 
as either Lthrcsh or the energy in n increases. 

AN EXAMPLE 

We now demonstrate the operation of our fault de- 
tection algorithm through an illustrative example. This 
example is based on the open loop system model shown 
in Figure 3. The plant model is represented by a family 
of plants as in Equation (??) with a nominal plant model 
given by P0(s) = 7^7 and uncertainty bound Smaz = 1. 
The uncertainty block A consists of three high frequency 
second order flex modes and is given by 

200 200 
: + - 

200 

s2 + 15s + 400     s2 + 10* + 1600     s2 + 10* + 4900 
(18) 

A frequency magnitude response plot of A is shown in Fig- 
ure 5. Note that the magnitude response of A is below 
unity for all frequencies so || A|| is indeed less than or equal 
to 6mal — 1. The modeling uncertainty weighting func- 
tion is given by W(s) = J++°°'. This function was chosen 
to emphasize the modeling errors at high frequencies while 



minimizing the errors at lower frequencies. The plant out- 
put measurement y is corrupted by an unknown noise n, 
and for our example we assume that ||n||2 < .0025. 

For our fault detection algorithm we set Lthresh — 
•5\\n\\io-\\di„\\2o- + |Jn[|2«r. This is an intermediate value of 
Lihrcah which does not preclude the possibility of MF's, 
but is also not extremely sensitive to FA's. Note also that 
this is a time-varying threshold which is dependent upon 
the computed values of di„. We ran a variety of time 
domain simulations using a reference step input r of mag- 
nitude 1.1. We used the data for r and y to construct 
di„ and dout- Finally, the weighted partial £2-norms (en- 
ergies), Ei„ and Eout, of each of these two signals were 
computed using Equations (??) and (??). 

In the first simulation we ran the system with no 
faults present and obtained the time histories shown in 
Figure 6. di„ (solid line) and dout (dotted line) are shown 
in Figure 6a while Ei„ (solid line) and Eout (dotted line) 
are shown in Figure 6b. Note that as di„ reaches its steady 
state value about zero, the initial bump in Ein also decays 
to zero. This is explicitly due to the exponential forget- 
ting factor built into V(t). Figure 6c displays the weighted 
partial energy of n. In a real system this value would not 
be available, but in our simulation we measured this value 
to ensure that our noise inputs adhered to our assump- 
tions. Finally, the difference Eout — Ei„ (solid line) and 
the threshold Lthrcsh (dotted line) are shown in Figure 
6d. In this particular case the energy difference is always 
below Lthreth so the fault detection algorithm correctly 
concludes that no fault is present. 

In the second simulation we configured the system 
such that a "large" failure corresponding to a step input of 
.11 would occur at time t = 2 seconds. The corresponding 
results, presented in an analagous manner to Figure 6, 
are shown in Figure 7. Note that the presence of the 
failure signal / is clearly evident in dout and EMt for times 
greater than 2 seconds. In this case the energy difference 
shown in Figure 7d exceeds Lthresh almost immediately 
after the fault has occured (at roughly t = 2.35 seconds) 
so the fault detection algorithm very quickly and correctly 
concludes that a fault is present. 

In the third time domain simulation we configured 
the system such that a "small" failure corresponding to a 
step input of .03 would occur at time t = 2 seconds. The 
corresponding results are shown in Figure 8. In this case 
the deviations of dout and E0ut from the no fault present 
case (Figure 6) are not as pronounced as. in the "large" 
failure case (Figure 7). From the plots shown in Figure 
8d we can see that it takes roughly three seconds after the 
fault occurs before the energy difference exceeds Lthrcsh- 
Thus, the fault detection algorithm correctly identifies the 
presence of this smaller fault but not as quickly as it iden- 
tified the larger fault. 

CONCLUSIONS AND RECOMMENDATIONS 

In this paper we have described a new time-domain 
based algorithm for detecting faults in systems in the pres- 

ence of modeling uncertainty. Our algorithm relies on 
processing true time domain system measurement data 
to analytically reconstruct key signals which characterise 
the modelling uncertainty. These signals are compared 
with apriori assumptions about the plant model to deter- 
mine whether or not a fault is present. The algorithm 
is easy to implement on either an open or closed loop 
system and its use was demonstrated via a simple ex- 
ample. Several critical implementation issues were also 
addressed. An efficient numerical implementation of the 
algorithm was presented which featured reduced memory 
and computational requirements. In addition, a weighted 
partial energy criteria was employed which ensures that 
the algorithm emphasizes the newest data. 

Certain crucial issues remain to be addressed. These 
include 1) optimal threshold selection strategies and the 
resulting tradeoff between False Alarm and Missed Fault 
error probabilities and 2) detecting and discerning a single 
failure from among a set of possible failures. These issues 
are currently under investigation. 
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Date: June 01, 1993 

Final Report for THAAD/IAP Support        Executive Summary 

This final report covers work done on May 18-21, 1993 to provide an independent analysis of 
a flexible missile control problem. During this time, I went to Lockheed to become familiar 
with an autopilot stability issue caused by flexibility of a thin missile. I evaluated the prob- 
lem and concluded that the tail mounted gyro reduced the response of the first flex mode by a 
factor of ten. The extra gyro reduces a very significant flex problem to a marginal problem. 
The remainder of the problem can be handled by some combination of flex filtering, passive 
damping, and employing aero devices to move the c.p. back during the high dynamic pres- 
sure portion of flight. 

The following section gives several formulas for the unstable aero mode, the size and location 
of the first flex mode, as well as an envelope for the remaining flex modes. These formulas 
are useful for determining the fundamental physical tradeoffs in designing a uniform cylindri- 
cally shaped missile. I would like to thank Bill Edwards, Robert Felder, Conrad Woo, John 
Sesak, and Doug Discher for there help in providing me the necessary information for this 
project. 



Date: June 01, 1993 

Final report for THAAD/IAP        Technical section: 

Summary 

The most important parameters in the control of an unstable flexible missile are: 
coaero 
 = the ratio of the unstable aero frequency and the first flex mode frequency, 

0), 
= the ratio of the unstable aero frequency and the actuator bandwidth, 

^«cuiator 

—- = uncertainty in the flex mode shapes, 

C, = the flex damping ratio, 
£c = the controller damping ratio, 

and the size of the resulting flex resonance peaks in the Bode plots. 

r 
i 

With only one gyro mounted at the nose 

Bode Plot peak = 
Wfle C 

With blended fore and aft gyros, 

Bode Plot peak = ^2<öaero ^ j,  A^_| __   1 

<0flc c ¥ '\ 

Rt 

V^ Rt 

c.p. - e.g. 

cp. - e.g. 

-N„ 
k 

~N„ ■&■ 1^1(2) 

E 
tr 

where 

L = the length of the missile 
R = the radius of the missile 
t = the skin thickness of the missile 
pm = the density of the entire missile 
c.p. = the center of pressure of the missile 
e.g. = the center of gravity of the missile 
CNo = the aerodynamic normal coefficient = 2 

Vj = flex boundary condition coefficient = 22 
E = Young's Modulus of the missile skin 
q = dynamic pressure 
C the flex damping ratio (between .01 and .05) 
Cc = the controller damping ratio (between .2 and 1) 

i 
V- 

t 



Bode Plot of Long Thin Missile System 
Stabilized by a PD Controller 
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Flex Dynamics 

The geometry of the THAAD missile is closely approximated as a free-free uniform 
annulus of length L, radius R, skin thickness t (with t « R « L), density pm, and Young's 

modulus E. Only the metal skin (of thickness t « R) contributes to the stiffness, while the 
entire cylinder (of thickness R) contributes to the density. As the fuel burns (uniformly along 
the length of the missile), pm decreases. 

The uniformity of the missile allows the use of a simple analytic formula to approximate the 
frequency of the first few flex modes, (Oflev The following formula is taken from W. C. 

Young, "Roark's Stress and Strain," Sixth Edition, McGraw-Hill, 1989. 

L7tR2)L3 

where 

V! = 22.4, v2 = 61.7, v3 = 121, v4 = 200, and v5 = 299. 

The damping ratio, £, is approximately .01 since there are almost no joints in the structure. 

The odd mode shapes have the same displacement but opposite slope at the nose and tail. 
The even mode shapes have opposite displacement but same slope at the nose and tail. 

Let TC be the control torque applied at the tail (x=0) of the missile using thrust vector control 

(xc = — Thrust sin(8)). Let ^(x) be the möde~sk>pe~öf mode i at thepöint x (x=0 at tail, x=L 

at nose). The mode slope gives the coupling between torque inputs and the flex response, as 
well as from the flex response to the angular rate measurements. The flexible body transfer 
function from control torque to pitch rate (at the point x) can be approximated as: 

t 

e(x)   , 1. Ti(x) s ¥i(0) 

i   s2 + 2Ctofl«.s + coflex.2 (4) 

Since the missile is a uniform shape, all the mass participates in each mode, therefore ^(x) is 
about size 1, i.e. 

[ 



4^(0) = 1.0 
A*F ß) 

^(L) = (-iy(l + -^-) 

where A*F represents the uncertainty in the match between the mode slope at the fore and aft 
locations.   Since the missile is nearly uniform in shape, the slopes should match to within 

A\I/ 
10%, i.e. l-=g-l < .1 for this missile. 

Rigid Body Dynamics due to Aero 

The aero torque due to flying through air of density p at speed V is approximately given by: 

tacro = (^pV2)(7CR2)(C.p. - C.g.) CNo (0-y) (6) 

We will assume that the flight path angle y changes much slower than the vehicle pitch angle 
0, and will linearize about 0 = 0 - y. Then the rigid body pitch dynamics can be approxi- 
mated with the following second order system: 

je = (V^pV2)(7dl2)(c.p.-c.g.)CNoe C7) 

If we rewrite this as: 

e = (coaero)26 (8) 

then the unstable (c.p. > c.g.) aero frequency is approximately given by: 

GW> = V[2 
r2\,„T>2- (fcpV'XjcR'Xcp. - eg.) Cv 

(9) 

The moment of inertia of a uniform thin (R « L) cylinder of length L, radius R, and density 
pm is approximately given by: 

j^^1' (10) 
12 

which gives 



<Öaero = V- 12(VipV2)(c.p. - eg.) Cv 

PmL3 

L    V    Pm 

cp. - e.g. r 

The rigid body transfer function from control torque to angular rate is: 

A = (4) 
*c J S   -C0a 

Combined Flex and Rigid Dynamics 

The ratio of equations 11 and 3 gives: 

coa 

%, «a -*V3 i Rt 
C-P- ~ c-g- 

-N„ (13) 

The combined rigid and flexible body transfer function from control torque to pitch rate 
the point x) can be approximated as: 

800 =(1) 
s2 - CO, 

[ ^(x) s ^(0) 

0
2      i   s2 + 2CcofleXis + ©a2 (14) I 

Actuators 

The THAAD actuator frequency is currently between the first and second flex modes. 

G>fl«j < ©actuator < %ex2 (15) 

The transfer function given in equation 14 must be modified at frequencies above the actuator 
frequency. f. 

i 

Controller 

Assume there are rate gyros at locations x^. and attitude gyros at locations x^.  In order to 



robustly control the unstable aero rigid body mode, the controller must have approximately 
twice as much torque as the unstable aero torque. 

coc
2 = 2coa (16) 

A simple PD controller (with damping ratio .2 < £c < 1) would then have the form 

xc = -J 2CC(0C IfCj 0(x )] + coc
2 B4 6(xagk)] 

j k 
(17) 

where the gyros have been blended to give the correct rigid body information: 

XCj=l 
j 

E4=i 
k 

At high frequency (ie co > coc) the rate term dominates the position term, so at high frequency: 

xc = -J (zkcoc) ztecv1 
(18) 

combining equations   14 and 18 gives the loop gain of the combined controller, K(s), and 
plant, G(s): 

K(s)G(s) = 
2Cccoc s 0^(^2^(00 8^(0) 

S2 - CO. i j    s2 + 2Ccoflex.s + cofl„ 2 (19) 

Fore and Aft Rate Gyros 

If only one gyro is used, it must be placed in the nose, since the rest of the vehicle separates 
after burnout. For controlling the flexible booster, it would be better to have the rate gyro 
mounted at the same location as the actuator (at the tail) since then the measurement and the 
applied torque would be collocated and would remain in phase for all flex modes. This 
allows the controller to remove energy by making the torque proportional to the sensed angu- 
lar rate. This would ensure that all flex modes were phase stable, except for the fact that the 
actuator dynamics ruin this argument above the actuator frequency. Consequenüy, it is safer 
to gain stabilize the flex modes. 



By blending the signals from a nose and tail gyro, the odd flex modes will nearly cancel, 
since they have opposite mode slopes at the fore and aft locations. This not only stabilizes 
the odd flex modes, but also reduces the ringing that would be present if we relied only on a 
single collocated gryo. 

If one rate gyro is placed at the nose, (xrg( = L), and the second rate gyro is placed at the 

tail, ( x^ = 0), then 

TiCx») ¥i(0) = *Fi(L) ^i(O) = (-1)1 (1 + ^-) 
¥ 

and 

^iOW W) = ^i(O) ¥i(0) = 1 

(20) 
r 

Since the missile is very uniform, the mode slopes are known to within 10%, 

The loop gain with a fore and aft gyro is given by: 

-K(s)G(s) = 

AW 

2  + ? S2- (Ö S2 + 2C©fleXlS + (0fle 

with Ci + C2= 1. 

Evaluating the above expression at the flex frequencies gives the size of the peaks: 

r. 

-KCJCOflexJGaCOfl^ = (-l)DCl(l + ^")   +C2 
Cc<Oc 

e*= 

(-1)nCl(l + -^)   +C2 
**n 

(23) 

If C! = 0 and C2 = 1, then the size of the flex peaks are: 

iKOOfleJGQCOflejl = c ■*-waero 

C<% =*» 
(24) 
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If cj = .5 = C2, then the size of the odd flex peaks are: 

lK(j%^)GücofleXa)l =  I» ^-1 ^=2. (25) 

Combining equation 13 with equations 24 and 25 gives equations 1 and 2 in the summary. 

Recall that we are assuming that the controller rate term dominates the controller attitude term 

by a factor of .   The blending is done only on the rate gyros, so if the loop gain in 

equation 25 drops below the attitude loop gain. i.e. I——I <    aero, then the flex signals com- 

ing through the unblended attitude loop may become larger than the rate loop. 

Detuning the Blended Rate Gyros 

Depending on whether A»F is positive or negative, setting q = .5 = C2 could result in either the 
fore or aft gyro dominating. In order to design a flex filter to further reduce the first flex 
peak, it is necessary to know the phase of the signal, therefore it is necessary to know which 
gyro is dominating. It may be necessary to set q = .45 and C2 = .55 to ensure that the aft gyro 
dominates. This will slightly increase the size of the first flex peak, but will ensure proper 
phasing of the blended gyro signals when there is 10% uncertainty in the mode slopes. 

Flex Filter Design Suggestions 

The flex filters should add as little phase lag as possible. If the gain is to be rolled off uni- 
formly above some frequency, then a Butterworth filter should be used to minimize phase 
loss. If the flex frequencies (which increase as fuel is burned) are known well enough, then 
the flex modes that are not phase stable can be notched out. A narrow notch filter introduces 
less phase lag than a broadband filter. 

Analyzing Actuator Nonlinearities 

The actuator nonlinearity (due to the backlash, hysteresis, etc. of the EMA gearing) can be 
analyzed using describing function analysis. If the gear-drive has enough friction that it is not 
backdrivable, then the aero loads on the actuator can be neglected. 


